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1. Introduction 
In the measurement of power system quantities and other phenomena (e.g. weather) as 
part of a Flexible Network or Smart grid approach (or indeed for more traditional 
planning and operational purposes), it is inevitable that failures and errors in 
measurements will occur. This report describes experiences of the detection and 
correction of such errors as part of the Tier 2 Low Carbon Networks Fund project 
“Flexible Networks for a Low-Carbon Future”. 
 

2. Data Error Detection 
It should be recognised that all measurements are generally subject to error to some 
degree. In a well-designed measurement process, these “routine errors” will usually be 
small, and well-understood. They may include quantisation errors, in which the measured 
value must be fitted to a fixed precision representation (which may be thought of as 
equivalent to a fixed number of decimal places). Calibration uncertainty will arise in 
relation to the measurement devices themselves. Derived measurements which are based 
on a number of actual measurements of a raw quantity (for example RMS voltages, which 
are based on a sufficient number of spot voltage measurements to characterise the 
waveform) are subject to an averaging effect which to a degree smooths out rapid 
changes in the measurement. Within the bounds of these errors and uncertainties, the 
measurement will still characterise well the underlying physical phenomenon being 
observed. 
 
However, from time to time, larger errors will be encountered, such that the measured 
value is not representative of the observed quantity. In some cases, no value will be 
recorded. These errors may result from a failure of the measurement device, its interface 
to the system being monitored or the communications channel by which the measurement 
is transported and stored. ‘Spurious’ measurements may in fact be correct in terms of the 
physical phenomena observed, but may indicate that the power system (or other observed 
entity) has moved into a state which is not of interest from the perspective of the user of 
the measurements. An example might be a change in distribution system configuration 
which temporarily transfers additional load onto a substation. The augmented substation 
load is not of interest to a planner in determining the annual peak load of the substation, 
but the fact of this transfer may only be detectable through the change in the measured 
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load, following which measurements under the abnormal configuration can be excluded 
from determination of the peak. 
 
Large errors can often be detected by applying a simple thresholding technique, where 
the threshold is set to a level such that measurements above or below this value are 
physically implausible, or at least highly suspect. Examples might be a current 
measurement threshold at a low integer multiple of the rating of the item of plant being 
measured, or a voltage measurement thresholds at 50% and 150% of nominal. Under 
almost all circumstances, the physical conditions corresponding to such measurements 
could not occur, and thus the measurements should be regarded as erroneous. This 
approach has been found to be useful as an initial filtering step in the detection of errors 
in data to be used for practical analysis, but further steps are also necessary. 
 
Smaller errors cannot reliably be detected by such simple approaches. In such cases, 
measured values are physically plausible, and in seasonally varying quantities, might be 
regarded as ‘true’ measurements at other times of year or in other circumstances. They 
are, however, distinct from other ‘true’ measurements around the time of measurement. 
For these approaches, a statistical approach which quantifies the ‘unexpectedness’ of a 
measured value has been found to be effective. 
 
Many measurands of interest in the planning and operation of power systems follow 
regular daily, weekly and annual patterns. For such measurements, a method based on a 
short-term forecasting method published in the academic literature1 has been applied. 
This method uses a detrending approach using annual and weekly measurement profiles 
(which are averaged over the preceding several years and weeks respectively) to produce 
a series of ‘expected’ measurements which are reflective of actual previous behaviour of 
the measurand over that time period. Inevitably, the actual measurements will differ from 
these expected values, but where the underlying process or phenomenon being measured 
is consistent over the period, it is expected that the scale of the differences will be 
consistent over time. 
 
The statistical distribution of recent differences between expected and measured values in 
data which is thought to be correct can provide guidance on the likely range of variation. 
Assuming a normal distribution of differences with zero mean, 99% of measurements 
will lie within ±2.57 standard deviations of the expected value, while 95% will lie within 
±1.96 standard deviations. This test is implemented by calculating the standard deviation 
of the recorded differences over a suitably large number of previous measurements (in 
Flexible Networks, for power measurements at 10-minute intervals, 8 weeks of data was 
used). For a 99% acceptability band, measurements which differed from the expected 
value by more than 2.57 standard deviations would be regarded as suspect. This is shown 
in Figure 1, which also shows the 99.9% acceptability band. Since this band must contain 
99.9% of measured points, it is wider than the 99% band. 

1 D.C. Hill and D.G. Infield, “Modelled operation of the Shetland Islands Power System comparing 
computational and human operators’ load forecasts”, IEE Proceedings: Generation, Transmission and 
Distribution, Vol. 142, No. 6, 1995, pp555-559. 
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Figure 1: Trend based approach to identifying suspect data points 

 
It is advisable to calculate and identify the statistical distribution of the differences, and 
then to use a standard table describing the distribution to identify the parameters for the 
chosen acceptability band. The acceptability band can be thought of as reflecting the 
‘false positive’ rate. With a 99% band, 1% of ‘true’ measurements would be expected to 
be marked as suspect, while for a 95% band, 5% of ‘true’ measurements would be so 
marked. The 99% band is thus wider than the 95% band. 
 
Over the long term, this method therefore has a clearly defined rate of ‘false positives’ in 
error detection. The rate of ‘false negatives’ or undetected errors is less well defined, and 
depends on the error characteristics of the measurement process and the behaviour of the 
quantity being measured. However, the maximum size of any undetected error is fixed in 
relation to the variability of the measured quantity, as defined by the statistical 
distribution of recent differences. 
 
This approach has been found to be effective in quantities which follow a regular pattern, 
and are not subject to sudden, unexpected disturbances – for example power and current 
measurements in primary and secondary substations. 
 
Since the definition of an ‘abnormal’ measurement is based on the statistical properties of 
recent measurements, this method will inherently adapt to sustained changes in the nature 
of the system being monitored, although at the cost of degraded performance during the 
adaptation. This is illustrated by considering its application to a voltage measurement 
data series obtained from the HV busbar of Ruabon primary substation: 
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Figure 2: Application of trend-based approach to voltage measurements 

 
In Figure 2, the method has, based on the previous 4 weeks of voltage measurements, 
established a 99% acceptability band of around ±50V around the ‘expected’ value. As 
previously discussed, a few measurements per day fall outside this band. A larger 
acceptability band (perhaps 99.9%, corresponding to about 65–70V) might identify the 
one or two obvious outliers on this day. 
 
Figure 3 shows the effect of the application of a 3% voltage reduction as part of the 
voltage reduction experiment at Ruabon primary substation: 

 
Figure 3: Effect of large sustained change in measured quantity 

 
The 3% voltage reduction results in a change in measurement of about 200V, four times 
the statistical acceptability band. As a result, all measurements immediately following the 
change are identified as suspect. However, over the following four weeks (corresponding 
to the amount of data used to calculate the expected values and acceptability band), the 
error detection method adapts to the change in three stages: 
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1. The acceptability band broadens, because the apparent variability of the 

measurements over the four-week window increases as more measurements at the 
new lower voltage are made. 

2. The series of expected values gradually approaches the new lower voltage level. 
The weekly recalculation of the expected voltage profile can be discerned 

3. The acceptability band reconverges to around ±50V as the variability in the 
previous 4 weeks measurements returns to its typical long-term value through the 
replacement of higher-voltage measurements with lower-voltage measurements. 

 
The ability of the detection method to detect suspect data points during this adaptation 
process is degraded, firstly because the initial measurements following the voltage 
reduction are mistaken for errors, but more importantly because the statistical 
acceptability bands widen significantly during the adaptation. Reducing the period over 
which the acceptability bands and expected value are calculated from 4 weeks will hasten 
the adaptation process, but will render the method more susceptible to being influenced 
by a small number of erroneous measurements or temporary changes in system 
conditions. 
 
Regardless of the method of identifying data errors, it is important that any pattern in 
their occurrence is identified and investigated. A permanently occurring error indicates, 
of course, a persistent failure or interference with the measurement system. The nature of 
the error may provide an indication of the failure which has occurred. Recording and 
disseminating the knowledge resulting from investigation of such failures can improve 
response to similar observed errors in the future. For example, it was noted that voltage 
measurements on one or more LV phases at a secondary substation of would occasionally 
reduce from a nominal value of 230–250V to around 30V and remain at that level. On 
investigation, it was found that the fuse in the connection between the LV busbar and the 
substation monitor had failed. This knowledge enables improved response to such 
failures in the future. 
 
Intermittent data errors should be examined for any consistent temporal pattern. Such 
patterns might be detected graphically, by plotting the occurrence of errors over different 
time periods – for example, the time of day at which errors occur might be plotted. 
Alternatively, daily or weekly error characteristics could be calculated. Errors which 
occur at a consistent point in time may be indicative of interference arising from a local 
source, or resulting from regular interfering activity within the measurement and 
communication system. 
 

3. Error Correction 
Error correction involves the substitution of artificially created “pseudo measurements” 
for missing or erroneous points in a measurement series. In many cases, error correction 
can be more easily and consistently undertaken some time after the time of the 
problematic measurement point, rather than attempting to insert values into a “live” 
measurement stream. Later correction allows the substitute values to benefit from an 
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understanding of how the measured quantity behaves both before and after the time of the 
missing data – this can be thought of as interpolation rather than extrapolation. 
 
Consideration should first be given to whether correction of errors in a particular 
measured quantity is both possible and required. If the analysis for which the 
measurements are to be used is tolerant of missing data in the quantity and pattern 
observed, the simplest approach is to discard the missing or suspect data points, and 
proceed with the analysis using the remaining ‘good’ data. For example, in the 
assessment and calibration of a primary transformer temperature model as part of 
Flexible Networks, two measurements of transformer temperature were not recorded in 
the middle of the experiment. Since these two points represented less than 1% of the 
experimental period, did not cover a period of particular interest which was otherwise 
unrepresented, and were expected to have only a small effect on the comparison between 
modelled and actual behaviour, they were simply excluded from the analysis. By contrast, 
a full day of temperature measurements was unavailable at the beginning of the 
experiment. These measurements would have covered the ‘heating up’ phase of the 
transformer’s behaviour following a sudden load increase, behaviour of considerable 
interest which was not otherwise represented. However, since no alternative source of 
information which would provide information about the transformer’s temperature was 
available, and considering that the purpose of the experiment was to calibrate a model 
(which could not therefore be used as a source of substitute pseudo measurements), it was 
considered impossible to correct this error, and the period was excluded from the 
experiment. 
 
A second example concerns the assessment of an appropriate interval for the routine 
measurement of network voltages. This involved the assessment of the effect on the 
annual statistical distribution of measured voltages of alternatives to the ‘raw’ 1-minute 
sampling interval for a number of primary and secondary substations. In this case, the 
extent to which the measurement series covered the time period of the analysis was 
assessed, as was the effect of erroneous measurements on the reduced sample 
distribution. It was found that at least 75% of expected measurements were available 
(with one outlier at 65%) and that altering the sampling rate did not significantly affect 
the coverage for any individual substation. 
 
In other cases, it will be necessary to reconstruct a suitable value to permit the required 
analysis. For example, many short-term load forecasting models use auto-regressive 
and/or moving average processes, in which the forecast value is dependent on observed 
recent values. Similarly, the IEC 60076-7 transformer thermal model requires a 
continuous sequence of load and ambient temperature measurements to estimate the 
current temperature model. In both of these examples, a missing or significantly 
erroneous measurement will degrade or disrupt the process. 
 
Isolated errors and short sequences of problematic measurements may be substituted by 
extrapolation from recent values, or when data is analysed after the event, by an average 
or trend connecting satisfactory measurements made beforehand and afterwards. Where, 
as in a load forecasting process, the analysis produces an estimate of the measured value, 
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it may be possible to substitute the estimate or forecast for a missing or rejected estimate. 
The shortest-term available forecast should be used in such a case. It will be appreciated 
that this process will inevitably lead to the estimate drifting from reality over time, and 
such an approach should only be used for a short period before other approaches must be 
used. 
 
Where more than a few consecutive measurements must be corrected, it will be necessary 
to construct a replacement data series from alternative or historical measurements. In 
some situations, it may be straightforwardly possible to reconstruct missing or erroneous 
values from other measurements. An example might be a primary substation in which all 
incoming transformer connections and outgoing HV feeders are monitored. In the event 
of error or failure in a current measurement, a corrected value could be reconstructed 
arithmetically from other measurements made at the same time. Flexible Networks 
experience suggests that measurement failures will often affect many of the 
measurements required to make such a substitution, but it may be appropriate in 
combination with other methods, as discussed further below. 
 
For some measurements, acceptable results may be achieved by directly substituting an 
alternative source of measurements for the missing or suspect measurements. In such 
cases, the pattern of ‘correct’ measurements should be compared with corresponding 
values from the substitute source to determine its acceptability. For example, in the initial 
calibration of the IEC transformer thermal model, there were significant gaps in the series 
of measured ambient temperatures at the primary substation concerned. Nearby primary 
substation and public weather stations were considered as substitutes, by directly plotting 
the correct measurements from the primary substation against the alternative (as shown in 
Figure 4), and by calculating the statistical distribution of differences between the two (as 
shown in Figure 5). This analysis showed that there was close agreement between the two 
sources, and that the difference would tend to reduce the risk arising from any error. 

 
Figure 4: Point-by-point comparison of desired and potential substitute measurement 
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Figure 5: Statistical comparison of desired and potential substitute measurement 

 
In other cases, it may be necessary to construct a replacement time series, either from 
average data taken from around the time of the missing data, or by selecting an 
appropriate alternative time series. Both of these approaches have been adopted for load 
measurement correction in analysis as part of the Flexible Networks project. An 
averaging approach was considered to be preferable, calculating a separate average 
profile for each day of the week, from several weeks around the missing measurements. 
However, this relies on the measurement series being sufficiently complete to permit 
calculation of a representative average. 
 
In a second analysis, a simple averaging approach was considered to be impractical, since 
it was necessary for the substitute data to represent a change in network configuration 
during the period to be corrected, and also because of persistent measurement errors 
which cast doubt on ability to construct a representative average profile. In this case, 
therefore, the desired transformer load measurement was constructed by addition of 
appropriate substitute feeder and transformer measurement series which were selected by 
inspecting measurement series from the weeks surrounding the period to be substituted 
and averaging weekly series having the required ‘true’ measurements, and consistency 
with the observed values in the week of interest. An example is shown in Figure 6, in 
which the week of interest is coloured pale blue, and the substitute data is constructed by 
averaging weeks other than that week and the week shown in purple. 
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Figure 6: Identification and comparison of potential substitute data series 

 
The resulting corrected load measurement series is shown in Figure 7.  

 
Figure 7: Data series including measured and corrected values 

 
It should be noted that the large section of corrected data shown in red was considered 
suitable for use as part of a model conditioning process, in which modest errors would be 
acceptable in ensuring that the thermal state of the model was approximately correct. It 
was not considered to be reliable enough to be used in determining the state of the 
transformer thermal model during the time that it was compared with actual 
measurements. 
 
In all cases it is important to note that corrected or substituted data points will usually be 
different from the ‘true’ measurement which would otherwise have been made. As such it 
is important that corrected data points are clearly identified, especially if they are placed 
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in a long-term data archive, or are shared with users who are not involved in the 
gathering, validation and correction processes. This is necessary to ensure that the 
corrected data does not, over time, become regarded as a ‘true’ representation of actual 
measured behaviour of the measurand concerned, and be relied on inappropriately. 
 
It is also important to document the precise method and data which has been used in the 
correction process. This will permit future analysts to determine the suitability of the 
correction method for the use of the data and to assess the risks which may result from it. 
An approach which is acceptable in large-scale statistical analysis may not be appropriate 
in cases where the detailed behaviour of the power system or its components over a short 
period is to be assessed. 

10 


	1. Introduction
	2. Data Error Detection
	3. Error Correction

