

# Flexible Networks Flexible Low Carbon Future

Project Cost Benefit Analysis - Voltage Optimisation September 2015



# Part A – Costs of the trial and future roll-out

## 1. Introduction

This document provides cost versus benefit analysis of the deployment Voltage Optimisation techniques to 11kV or LV networks. The document aims to quantify the cost per kVA of capacity gain by applying an "alternative" or new technology solution against the cost per kVA of the traditional business as usual reinforcement solution.

# 2. Planned Innovation and Benefits

The objective of this project element was to evaluate the network capacity benefit that could be gained if the network voltage was reduced to an optimum level, to provide a load reduction of network demand and create additional headroom for generation capacity. The benefit target for this work package was 2% of the capacity within the trial sites.

## 3. Activities of the intervention

- Following deployment of enhanced network monitoring, undertake system voltage reductions.
- Analyse the effects of voltage changes from the monitoring data.
- Consideration of advantages/disadvantages for future voltage management policy.
- Identify the generation capacity gain created through changing the network voltage.

## 4. Trial Project Cost and Future Roll out cost

The budget for this work was included in the £2,212K for work package 1.2 enhanced substation monitoring.

Table 1 below is a summary of the expenditure for voltage optimisation trial and future deployment.

| Activity                            | Trial cost<br>(£) | Repeated<br>Method<br>Cost (£) | Benefit<br>(kVA ) |
|-------------------------------------|-------------------|--------------------------------|-------------------|
| Monitoring of network node voltages | 25000             | 8000                           |                   |
| Analysis of voltage scope           | 10000             | 4000                           |                   |
| Changes to voltage control systems  | 1000              | 8000                           |                   |
| Evaluation of voltage changes       | 8500              | 5000                           |                   |
| Engineering & project management    | 12000             | 6000                           |                   |
| Totals                              | 56500             | 31000                          | 289.5             |
| Cost/Benefit Ratio (£/kVA)          |                   | 107.08                         |                   |

Table 1

Monitoring of network node voltages – This provides for installing voltage data recording at specific nodes on the LV network prior to varying the system voltage. This does not include



for the wide scale substation monitoring systems which were needed to provide a full picture of the network load/voltage conditions, this was provided under the enhanced secondary substation monitoring work package.

Analysis of voltage scope – This includes for the analysis of the voltage profiles across the network monitoring points to determine the optimal voltage change available whilst maintaining supplies within statutory limits.

Changes to voltage control systems – This includes for changing the system voltage at either primary transformer AVC set points or secondary transformer tap settings.

Evaluation of voltage changes –This allows for the analysis of the system voltages and margins post the optimised settings being trialled.

Engineering & project management – This covers the practical aspect of delivery of the voltage monitoring equipment, data analysis and system changes.



#### Part B – Financial Assessment

## **Reinforcement Base Cost at LV**

A generic base cost of £150/kVA has been estimated for LV reinforcement.

In order to allow for the potential amount of capacity released by this project to be provided by conventional reinforcement, 358kVA of capacity would need to be provided. Using the pro-rata base cost of £150/kVA for additional LV capacity, the base cost of network reinforcement is;

PV Generation Capacity created 358kVA @ £150/kVA = £53,700

# **Carbon Saving:**

For this trial it is estimated a saving of 200,000kWh can be realised through the reduced energy consumed by the customers

Cost of Carbon = Energy x Conversion Factor x Value of Carbon

Using the equation above;

Energy = 200,000kWh

Conversion Factor =  $0.45211 \text{ kgCO}_2\text{e/kWh}$  (average over RIIO ED1 8 year period to 2023) Value of Carbon = £14.03/tCO\_2e (average over RIIO ED1 8 year period to 2023) The Cost of Carbon/year = 200,000kWh x 0.45211 ÷ 1000 x 14.03 = £1,269 Carbon Saving over 10 years = a saving of £12,686 The Benefits rating of the project as per Table 1 is calculated at 4 as the project will avoid >£10,000 in CO<sub>2</sub>. Saving: £12,686

Benefit rating: 4 (significant)

# **Social and Environmental Benefit**

The element of the project provides for energy saving for customer loads which use less power with a lower voltage input and thereby operate at a reduced power (the overall power saving is nullified for thermostatically controlled equipment or non-linear loads). It also provides for additional SSEG to be connected which would otherwise create an overvoltage situation.

Customer energy savings = 50,000kWh (load) + 150,000kWh (generation) =  $\sim 200,000$ kWh x  $\pm 0.137$ /kWh =  $\pm 27,400$ pa (or  $\pm 274,000$  over 10years)

The above only accounts for the reduced load energy savings and the renewable generation energy saving and does not include the customer investment for the SSEG (probably solar PV). The investment for renewable SSEG (e.g. solar PV) is typically offset via the Feed in Tariff. Additional SSEG capability (Feed in Tariff for 80 typical domestic installations) = 150,000kWh, @14p/kWh = £21,000 (or £210,000 over 10years)

Benefit rating: 4 (significant)



# **Financial Benefit:**

The project identified the voltage range which maintained the voltage within the DNO's statutory obligations.

Base Cost:  $\pounds$ 53,700 Method Cost:  $\pounds$ 31,000 Non-Network Derived Benefits: Carbon + Social;  $\pounds$ 12,686+  $\pounds$ 27,400 =  $\pounds$ 40,086 Method Cost - Non Network Derived Benefits;  $\pounds$ 31,000 -  $\pounds$ 40,086 = - $\pounds$ 9,086 Financial Benefit = Base Cost - Method Cost Financial Benefit =  $\pounds$ 53,700 - (- $\pounds$ 9,086) Financial Benefit =  $\pounds$ 62,786

Benefit rating: 3 (medium)

#### **Safety Benefit:**

None envisaged standard health and safety processes will be applied and any new learning gained from the project will be shared.

Benefit rating: 0 (nil)

#### **Network Reliability Benefit:**

The project has no measureable reliability benefit to the network.

Benefit rating: 0 (nil)

#### 5. Benefit Scorecard

| Grading of<br>Benefit | Financial<br>Benefit     | Safety Benefit Per<br>Reported Case                         | Social and<br>Environmental Benefit                                                                               | Network Reliability<br>Benefit                                                                            | Carbon Saving                |
|-----------------------|--------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------|
| High<br>(5)           | Major<br>£1M+            | Lead to the reduction<br>of fatalities<br>>£1m              | Managed realignment<br>(significant) –High<br>incurred costs and<br>environmental<br>benefit/value > £50k         | Leads to significant<br>and permanent<br>improvement in<br>Regulatory<br>performance<br>targets<br>>£100k | Major<br>>£30k £/tCO2e       |
| Significant<br>(4)    | Significant<br>£100k-£1M | Significant<br>improvement to public<br>safety<br>£100k-£1m | Managed realignment<br>(minor) –Minor to<br>medium incurred<br>costs and<br>environmental<br>benefit/value > £25k | Leads to<br>sustainable<br>improvement in<br>Regulatory<br>performance<br>targets<br>>£50k                | Significant<br>>£10k £/tCO2e |



| Medium<br>(3) | Medium<br>£10k-£100k | Reduction of<br>reportable injuries<br>>£20k                      | Improve (significant)<br>Significantly improve<br>existing processes and<br>systems to adapt the<br>existing environmental<br>characteristics > £10k | Leads to<br>improvement in<br>performance<br>>£10k     | Medium<br>>£5k £/tCO2e |
|---------------|----------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------|
| Minor<br>(2)  | Small<br>£1k-£10k    | Lead to the reduction<br>of absence due to ill<br>health<br>>£11k | Improve (minor);<br>Improve existing<br>processes and<br>systems to adapt the<br>existing environmental<br>situation > £1k                           | Contributes to<br>improvement in<br>performance<br>£1k | Minor<br>>1k £/tCO2e   |
| Low<br>(1)    | Low<br>£0-£1k        | Avoidance of minor<br>injury<br>>£0.33k                           | Do minimum; This is a<br>continuation of existing<br>processes and<br>maintenance, delaying<br>but not avoiding or<br>improving < £1k                | Small but<br>measurable<br>improvement<br><£1k         | Low<br><£1k £/tCO2e    |
| Nil<br>(0)    | None or<br>Negative  | No Tangible Benefit                                               | No Tangible Benefit                                                                                                                                  | No Tangible Benefit                                    | No Tangible Benefit    |

|                   | Financial<br>Benefit | Safety Benefit<br>Per Reported<br>Case | Social and<br>Environmental<br>Benefit | Network Reliability<br>Benefit | Carbon<br>Saving |
|-------------------|----------------------|----------------------------------------|----------------------------------------|--------------------------------|------------------|
| Benefit<br>Rating | 3                    | 0                                      | 4                                      | 0                              | 4                |
| Total             | 11                   |                                        |                                        |                                |                  |