

D-Suite Discovery Show and Tell

13/06/2023

Content

00 Introduction

01 Work Package 1

Customer Requirements and Core LV Network Functions

02 Work Package 2

Literature Review and Supplier Engagement

03 Work Package 3

Design Specifications of Hardware and Control Algorithms

04 Work Package 4

Roadmap to Commercialisation

05 Q&A

Ollntroduction

Introduction

Drivers and Solutions

Government incentives:

- Planned rollout of 600,000 heat pumps a year from 2028,
- The ban on new ICE vehicles by 2030 and, ultimately,
- The net zero target for 2050.

The LV network is expecting a large uptake of:

- Heat pumps
- EV chargers 3.5 & 7 kW
- DER

The problems LV networks will experience

- Voltage rise
- High circuit and transformer utilisation
- Large phase imbalance due to single phase connections of most customers.

These issues can be mitigated by:

- LV Distributed STATCOM (D-STATCOM). This technology has never been deployed in UK network.
- Distributed Soft Open Point (D-SOP) D-Suite aims to build up on the technology developed by UKPN to trial a more flexible and controllable solution.
- Distributed Smart Transformer (D-ST) -- D-Suite will build up on learning from LV Engine project to fit a partially rated power electronics within slim design distribution transformer; and
- Distributed Harmonic Filter (D-HF) -- There are number of solutions in the market that need further development for LV applications.

Customer Requirements and Core LV Network Functions

Use Case

Examples:

- Voltage Profile Improvement D-STATCOM
- Phase Balance Improvement DSTATCOM, D-SOP & D-ST
- Balanced Transformer Utilisation D-SOP
- Harmonic Mitigation- D-HF

Networks Modelled

- SP Distribution- Radial: Urban, Suburban, and Rural.
- SP Manweb Interconnected: Urban, Suburban, and Rural.
- LCT Levels: Present, 2028, 2036, 2040.

WP2: Literature Review and Supplier Engagement

Goal: holistic literature review and supplier engagements to identify research gaps and inform technology development

Three D-Suite unique aspects considered:

- LV distribution (rather than MV or HV distribution),
- grid-connected systems (rather than islanded microgrids),
- and conventional AC systems (rather than mixed AC/DC or DC distribution systems).

Threefold approach considered:

- Holistic review of historic and ongoing power electronics projects, to identify challenges to uptake and potential technology innovation classes
- Assessment of the potential of each technology class to address challenges
- Identification and discussions with potential suppliers of D-Suite technologies

- Advanced design
- Coordinated control
- Wide Band Gap Devices
- Advanced manufacturing
- Engaging supply chains
- Network integration

Figure 2.1. The primary technology class of the 54 EU-based Horizon projects and US-based ARPA-E projects

WP2: Literature Review and Supplier Engagement

Table 2.2. List of technology classes identified in projects surveyed and abbreviations.

Project review

- Project review explored projects on Smarter Networks Portal, Horizon Europe CORDIS database, ARPA-E project database
- Nine challenges to uptake identified
- Innovations fall into six technology classes

Literature analysis

- Projects reviewed and categorized for D-Suite relevance
- Potential benefits of innovations assessed against challenges
- D-Suite relevant project findings collated for challenges and in terms of LCA

Resources developed

- 6×9 challenge-technology innovation matrix developed
- International project database (54 projects, 9 challenges, 6 technologies)
- Potential suppliers database (18 suppliers)

Challenge	Abrv.
Cost	Со
Maintenance & reliability	M&R
Maintaining power quality	PQ
Thermal management	ThM
Cyber security	CS
Stability and controllability	S&C
Sustainability	Su
Protection	Po

Table 2.1. List of challenges identified in projects surveyed.

Challenge	Abrv.
Cost	Со
Maintenance & reliability	M&R
Maintaining power quality	PQ
Thermal management	ThM
Cyber security	CS
Stability and controllability	S&C
Sustainability	Su
Protection	Po
Personnel	Pe

Technology class Abrv. Advanced design AD Coordinated control CC Wide bandgap devices WBG Advanced manufacturing AM Engaging supply chains **ESC** Network integration NI

Six technologies

Nine challenges

Table 2.3. Challenge-technology matrix for power electronics-based solutions.

	Challenge to PED uptake at LV by DNOs								
	Со	M&R	PQ	ThM	CS	S&C	Su	Po	Pe
AD	2	1	1	2	1	1	2	1	1
CC	1	1	1	2	2		2	1	1
WBG	1	1	1	2	1	2	1	1	1
AM	2	2	1	3	1	1	1	2	1
ESC	2	2	1	1	1	1	2	1	2
NI	1	2	2	1	1	1	2	2	1
	CC WBG AM ESC	AD 2 CC 1 WBG 1 AM 2 ESC 2	Co M&R AD 2 1 CC 1 1 WBG 1 1 AM 2 2 ESC 2 2	Co M&R PQ AD 2 1 1 CC 1 1 1 WBG 1 1 1 AM 2 2 1 ESC 2 2 1	Co M&R PQ ThM AD 2 1 1 2 CC 1 1 1 2 WBG 1 1 1 2 AM 2 2 1 3 ESC 2 2 1 1	Co M&R PQ ThM CS AD 2 1 1 2 1 CC 1 1 1 2 2 WBG 1 1 1 2 1 AM 2 2 1 3 1 ESC 2 2 1 1 1	Co M&R PQ ThM CS S&C AD 2 1 1 2 1 1 CC 1 1 1 2 2 3 WBG 1 1 1 2 1 2 AM 2 2 1 3 1 1 ESC 2 2 1 1 1 1	Co M&R PQ ThM CS S&C Su AD 2 1 1 2 1 1 2 CC 1 1 1 1 2 2 3 2 WBG 1 1 1 1 2 1 2 1 AM 2 2 1 3 1 1 1 ESC 2 2 1 1 1 1 2	Co M&R PQ ThM CS S&C Su Po AD 2 1 1 2 1 1 2 1 CC 1 1 1 1 2 2 3 2 3 2 1 WBG 1 1 1 1 2 1 2 1 1 AM 2 2 1 1 1 1 2 ESC 2 2 1 1 1 1 1 2 1

Key	
Neutral / ineffective	1
Effective	2
Highly effective	3

Challenge-technology matrix

WP3: Design Specifications of Hardware and Control Algorithms

Goal: To identify design specifications of suitable PED solutions for **various types of D-Suite devices** to enhance power quality and promote the adoption of low-carbon technologies in LV distribution networks.

Four D-Suite devices include:

- Distributed STATCOM (D-STATCOM)
- -Distributed Soft Open Point (D-SOP)
- -Distributed Smart Transformer (D-ST)
- -Distributed Harmonic Filter (D-HF)

Threefold approach considered:

- Propose tailored hardware solutions to effectively achieve necessary network functions
- -Conduct **comprehensive hardware design** to meet operation, protection and overall network interface requirements
- Develop effective control methods to ensure voltage support, reactive power compensation, active power flow management, and harmonic elimination

The overall structure of D-Suite.

WP3: Design Specifications of Hardware and Control Algorithms

Topology design

- Suitable topologies for four D-suite devices are identified
- Protection circuits are designed to meet the safety requirement
- Design specifications of power electronic devices are elaborated
- Modular and scalable designs are developed

Control design

- Functions offered by four D-suite devices are identified
- -Control schematics are developed following hierarchical control structures (switching control layer, converter control layer, application control layer, and system control layer)

Topologies of D-suite devices

Control methods of D-suite devices

WP3: Summary of Findings

- The low voltage network will face the most strain as the uptake of Low Carbon Technologies increases.
- D-Suite technologies can enhance low voltage networks by providing coordinated functionalities such as voltage, power, and harmonic compensation.
- Topologies and control strategies of D-suite devices have been designed to achieve desired voltage stability, system reliability and harmonic performance.
- To advance the Technology Readiness Level of D-Suite devices, further development will involve the creation of control units for the PEDs, prototyping and demonstration of different topologies.

Roadmap to Commercialisation

05 Q&A

