

13.1 Appendix A13.1 - Generating Plant Type Verification Test Sheet
Type Approved Generating Plant (>16A per phase but ≤ 50 kW 3 phase or 17 kW 1 phase)

GENERATING PLANT DETAILS

Generating Plant Type reference:					
Generating Plant Technology:					
Manufacturer:	Tel: Address:				
	Fax:				
Technical file reference No:					
Maximum export capability (Generating Plant rating le	ess parasitic load)				

TEST HOUSE DETAILS

Name and address of test	
house	
Telephone number	
Facsimile number	
E-mail address	

TEST DETAILS

Date of test	
Name of tester	
Signature of tester	
Test location if different from	
above	

POWER QUALITY

			Harmo	nics Er	nission	IS		
Minimal Short Ci	rcuit Ra	itio R _{sce}	:					
Value of Short C	ircuit Po	ower S _s	corres	ponding	g to R _{sce}	:		
Equipment Phas	es: Sino	gle Pha	se / Inte	erphase	/ Three	Phase	(delete as ap	propriate)
Description	Harmonic Current % = $100I_n/I_1$				Harmoni Distortion I	c Current Factors (%)		
Harmonic:	l ₃	I ₅	I ₇	l ₉	I ₁₁	I ₁₃	THD	PWHD
Limit:								
Actual Value:								
Notes:								

Detailed requirements are specified in BSEN 61000-3-12.

Where BSEN 61000-3-12 requires assessment of separate loads (i.e. for equipment with more than one rating or for hybrid equipment) then the values for each separate load shall be provided.

		Voltage F	Fluctuations		
Equipment mee	ts BSEN 610)00-3-3 Ye	s / No (delete a	is appropriate	e)
If equipment do	es not meet	BSEN 61000-	3-2 :		
i) Does equipm	nent require a	a supply rated	l≥100A? Yes	/ No (delete	as appropriate)
ii) If the answer	to i) is no, s	pecify the valu	ue of Z _{ref} :		(ohms)
iii) If the answer	to i) is no, s	pecify the valu	ue of Z _{max} :		(ohms)
			Voltage Disturb	ance	
	P _{st}	P _{lt}	d(t) %	$d_c \%$	d _{max} %
Limit	1.0	0.65	33	33	
(at Z _{ref})	1.0	0.00	0.0	0.0	
Actual Value					
(at Z _{ref})					

Notes:

Detailed requirements are specified in BSEN 61000-3-11 and BSEN 61000-3-3.

If the equipment requires a supply rated at \geq 100A the maximum system impedance is deemed to be 0.15 + j0.15 ohms for each phase and 0.1 + j0.1 ohms for the neutral.

If the voltage disturbance values are above the limits for the specified reference impedance (Z_{ref}) then the manufacturer shall declare a maximum value of system impedance (Z_{max}) for which the equipment satisfies the voltage disturbance requirements of BSEN 61000-3-11.

	DC injection			Power factor			
Limit	20mA, test levels *	OmA, tested at three power evels *			0.95 lag – 0.95 lead at three voltage levels		
Test Point	10%	55%	100%	212 V	230 V	248 V	
Value Measured							

* Indicative values are shown for minimum, medium and maximum power levels. # insert maximum value of dc injection and worst case pf value recorded during testing

PROTECTION T	ESTS			
Protection	Setting		Test R	esults
Over Voltage Stage 1	Volts %	Sec	Volts %	Sec
L1-N or L1-L2				
L2-N or L1-L3				
L3-N or L1-L3				
Over Voltage Stage 2	Volts %	Sec	Volts %	Sec
L1-N or L1-L2				
L2-N or L1-L3				
L3-N or L1-L3				
Under Voltage Stage 1	Volts %	Sec	Volts %	Sec
L1-N or L1-L2				
L2-N or L2-L3				
L3-N or L1-L3				
Under Voltage Stage 2	Volts %	Sec	Volts %	Sec
L1-N or L1-L2				
L2-N or L2-L3				
L3-N or L1-L3				
Over Frequency Stage 1	Hz	Sec	Hz	Sec
Over Frequency Stage 2	Hz	Sec	Hz	Sec
Under Frequency Stage 1	Hz	Sec	Hz	Sec
Under Frequency Stage 2	Hz	Sec	Hz	Sec

Other relevant			
protection			

LOSS OF MAINS TEST

Method used			
Output power level *	10%	55%	100%
Trip setting			
Trip value			

* Indicative values are shown for minimum, medium and maximum power levels.

RECONNECTION TIMES

Reconnection Time	Under/Over voltage	Under/Over Frequency	Loss of mains
Minimum value	180 sec	180 sec	180 sec
Actual Setting			
Recorded value			

FAULT LEVEL CONTRIBUTION

Short Circuit Test

This test should determine the value of short circuit current at the **Generating Plant** terminals.

The **Generator** shall declare, to the **DNO**, the maximum short circuit current contribution from the **Generating Unit** and the conditions under which this exists.

One method for determining the short circuit current contribution is described below.

The short circuit current contribution of the **Generating Unit** shall be measured upon application of a short circuit on the **Generating Unit** terminals (all phases / phase to neutral) with the machine operating at full load output steady state conditions.

Current measurements shall be taken from application of fault until the time the fault has been disconnected, following operation of the **Generating Unit** protection. A current decay plot shall be produced for each phase from inception of the fault until the **Generating Unit** has been disconnected. The plot will need to show the highest value of peak short circuit current, eg for a **Generating Unit** supplying a purely inductive load the highest value of peak short circuit current will result when the fault is applied at a voltage zero. Where practicable the tests will need to determine values for all of the relevant parameters listed in the table below. These parameters are described in IEC 60909¹ whilst this standard is primarily for three-phase generators the methodology for determining these parameters can be applied to single-phase generators.

For rotating machines and linear piston machines the test should produce a 0 - 2.0s plot of the short circuit current as seen at the **Generating Plant** terminals.

Parameter	Symbol	Value
Peak short-circuit current	i _p	
Initial value of aperiodic component	A	
Initial symmetrical short-circuit current *	I" _k	
Decaying (aperiodic) component of short- circuit current *	i _{DC}	
Reactance / Resistance Ratio of source *	×/ _R	

Short Circuit Parameters

¹ **IEC 60909-0:2001 -** Short-circuit currents in three-phase a.c. systems. Calculation of currents

Appendix A 13.1 * Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot

SELF MONITORING – SOLID STATE SWITCHING

Test	Yes / No
It has been verified that in the event of the solid state switching device failing to disconnect the Generating Plant , the voltage on the output side of the switching device is reduced to a value below 50 volt within 0.5s.	

COMMENTS

