# Connection of Power Generating Modules to DNO Distribution Networks in accordance with EREC G99 Version 1 August 2018 # Connection of Power Generating Modules to DNO Distribution Networks in accordance with EREC G99 This form should be used by Customers connecting any generating plant to the Distribution Network Operator (DNO) Distribution Network. Customers with generating plant are known as Generators in distribution network documentation and will be referred to as such in this document. The form should be used by Generators connecting a new Generating Unit, or modifying plant in an existing Power Generating Facility. Note that Generating Units may comprise Electricity Storage plant and hence a Customer connecting Electricity Storage plant to the DNO Distribution Network is a Generator. It is possible to connect almost any Power Generating Module<sup>1</sup> to the Distribution Network. In order for the connection to meet the requirements of a new Generator and the existing Customers it is important to ensure the new connection is properly designed and compliant with Engineering Recommendation G99. This means there is a need for information to be exchanged between you as the Generator and the local DNO. The Data Registration Code of the Distribution Code sets out the obligations on the Generator and DNO to exchange data as part of the design process and lists the data items that may need to be exchanged. The purpose of this application form is to simplify and clarify this data exchange process. - If the rating of the Power Generating Module that you are applying to connect is 16 A per phase or less, you will probably be able to connect it using the far simpler connection process for Micro-generators complying with Engineering Recommendation G98. - If the rating of the Power Generating Module that you are applying to connect is greater than 16 A per phase and less than 17 kW (or less than 50 kW three phase), you will probably be able to connect it using the connection process complying with Engineering Recommendation G99 and using Form A.1 in Engineering Recommendation G99. ### This Application Form is for all other Generators and is in five parts. The terms used in this form are aligned with those in Engineering Recommendation G99. Engineering Recommendation G99 contains a complete set of definitions and is available from the ENA website. This Application Form should be used for all Type A Power Generating Modules > 50 kW and all Type B, Type C and Type D Power Generating Modules. This Application Form will form part of the Power Generating Module Document (PGMD) for Type B, Type C and Type D Power Generating Modules. The PGMD is completed throughout the connection process and finalised before the DNO issues a Final Operational Notification. Types of Power Generating Module are defined in Engineering Recommendation G99 and repeated below: **Type A:** A Power Generating Module with a Connection Point below 110 kV and a Registered Capacity (ie rating) of 0.8 kW or greater but less than 1 MW. **Type B:** A Power Generating Module with a Connection Point below 110 kV and Registered Capacity of 1 MW or greater but less than 10 MW. **Type C:** A Power Generating Module with a Connection Point below 110 kV and a Registered Capacity of 10 MW or greater but less than 50 MW. **Type D:** A Power Generating Module with a Connection Point at, or greater than, 110 kV; or with a Connection Point below 110 kV and with Registered Capacity of 50 MW or greater. ### Parts 1 to 3 These parts are required at the connection application stage to collate the initial data that the DNO requires to assess the connection application. In some cases this information may be sufficient for the DNO to complete the connection design and make a connection offer. In this case there will be no need for you to provide additional information. However, for some Power Generating Module connection applications, depending on the size of the Power Generating Module and the proposed point of connection, this initial submission of information may not be sufficient for the DNO to complete the connection design and make a connection offer. The DNO will advise you if you need to provide further information so that the connection design can be completed when the information provided in Parts 1-3 of the application form have been assessed by the DNO. ### Part 4 If the DNO requires information in addition to that provided in Parts 1-3 of the application form, the DNO will request that Part 4 of the application form is completed. For example, if your Power Generating Module is greater than 150 kW the DNO is likely to require this information. This may be necessary to enable the connection design to be undertaken or may be required during the connection process as part of the completion of the Power Generating Module Document. Generally you will need to complete all of Part 4 of the application form appropriate to the type of Power Generating Module although the DNO may indicate if not all of this information is required. ### Part 5 In some cases the DNO will require further information which is detailed in Part 5 of this application form to complete the connection design. The DNO will advise you if such information is required. ### **Guidance on completing the application form** There is the option for you to complete Parts 1 to 4 of the application form and return all of these as part of the initial submission stage. This will speed up the DNO design process as there is unlikely to be a need for additional information to be provided at that stage. However this may result in you providing information that is not required in order for the DNO to design the connection. The application forms can be downloaded from the ENA website and when completed they should be sent to your local DNO. Their contact details can be found by following the link below, along with a postcode search facility to find out who your local DNO is: http://www.energynetworks.org/info/fags/who-is-my-network-operator.html The following section provides an overview of the information required to complete each part of the application form, which is divided into the following sections: | Part 1 | Contact details, location and operational information | Initial submission | |---------|-----------------------------------------------------------------------------|------------------------| | Part 1a | Supplementary contact details | Initial submission | | Part 2 | Power Generating Facility general data | Initial submission | | Part 3 | Power Generating Module model data | Initial submission | | Part 4a | Synchronous Power Generating Modules | Prior to synchronising | | Part 4b | Power Park Module model data:<br>Fixed speed induction Generating Units | Prior to synchronising | | Part 4c | Power Park Module model data:<br>Doubly fed induction Generating Units | Prior to synchronising | | Part 4d | Power Park Module model data:<br>Series inverter connected Generating Units | Prior to synchronising | | Part 4e | Power Park Module model data:<br>Electricity Storage plant | Prior to synchronising | | Part 4f | Transformer information | Prior to synchronising | | Part 5 | Additional data which may be required by the DNO | Prior to synchronising | ### Part 1 ### This part of the application form is in two sections. Part 1 enables you to provide: - Contact details for you and your consultant (if you have one). - The location of your Power Generating Module. Part 1a enables you to provide supplementary contact details for the Generator, Generating Unit installer and Electricity Storage plant installer, if applicable. This data should be provided at the initial submission stage. ### Part 2 ### Part 2 enables you to provide: - Details of the import and export requirements for your site. It is important to make sure that you consider the import requirements for any load that you have on your site in addition to the export from the generation plant. - Information about the fault level contribution from the Power Generating Facility at the Connection Point, although you do not need to provide this information here if more detailed fault level information is provided in Part 3 of the application form. This data should be provided at the initial submission stage. ### Part 3 This part of the application form requires general details about the Power Generating Modules being connected. This data should be provided at the initial submission stage. ### Part 4 This part of the application form enables you to provide more detailed information about the Power Generating Modules that comprise the facility, including Electricity Storage, that you are applying to connect. The relevant section of Part 4 of the form should be completed for each different type of Generating Unit. More information is required if the connection is likely to be at high voltage rather than at low voltage. If the Power Generating Module that you are looking to connect is larger than 150 kW you should assume that your site may be connected at high voltage and provide this additional information. If there are any items on the application form that you are unsure about, it would be worth contacting the company you are arranging to buy your generation plant from as they should be able to provide some of the more technical information. If you are unable to provide some of the technical details for example if you have not yet decided who to buy your generation plant from, you can provide estimated data provided that you clearly indicate on the application form which data is estimated. You will need to confirm this data as soon as possible and always before the Power Generating Module is commissioned. The application form enables you to provide detailed technical information about the generation plant you are applying to connect. It is split into five sections. The first four sections relate to particular types of Power Generating Module. You only need to complete the section relating to the type of Power Generating Module that you are applying to connect ie. Part 4a, 4b, 4c or 4d. Use one form for each type of Generating Unit. Part 4e enables you to provide additional information about Electricity Storage plant. Part 4f enables you to provide information about any transformers that you plan to use. Each section should be copied as many times as required for the plant being connected. This data can be provided at the initial submission stage, and must be provided prior to commissioning. # Part 5 Part 5 of this form enables you to provide additional data that may be required by the DNO prior to issue of the Final Operational Notification. When completing Parts 1-4, if you are unable to provide some of the technical details, if for example you have not yet decided who to buy your generation plant from, you can provide estimated data provided that you clearly indicate on the application form which data is estimated. You will need to confirm this data as soon as possible and always before the Power Generating Module is commissioned. # **Version Control – please continue as required** The Standard Application Form is used as an iterative document, developed as your connection and commission process develops. When you formally resubmit this application form to the DNO (eg with additional or updated information), you should use this page to note the issue number, date of submission and any notes on changes, in order to maintain version control. | Issue # | | | |------------|---------|--| | Date | | | | | | | | Issue # | | | | Date | | | | Note re am | endment | | | | | | | | | | | Issue # | | | | Date | | | | Note re am | endment | | | | | | | | | | | Issue # | | | | Date | | | | Note re am | endment | | | | | | | | | | # Part 1 # To be completed for all new connections Telephone No. # **Applicant's Details** Company Name Company Registered No. Postal Address Contact Name **Email Address** Telephone No. **Consultant or Agent's Details (if applicable)** Consultants Name Postal Address Contact Name **Email Address** # **Power Generating Facility location and operation** | Power Generating Facility name | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | Site Postal Address or attach a site boundary plan (1:500) Please insert the file name of the attachment here | | | | Details of technology (eg Solar, Wind, Biomass, Diesel/CHP, Electricity Storage) | | Details of any existing Connection Agreements held by the Customer at or in the vicinity of the proposed or existing Connection Point | | | | Details of any existing Import MPAN (for any existing import metering system) | | Details of any existing Export MPAN (for any existing export metering system) | | Target date for provision of connection / commissioning of Power Generating Modules | | Connection Point (OS grid ref or description) | | Preferred Connection Point voltage | | V | | Single line diagram of any on-site existing or proposed electrical plant or, where available, operation diagrams. Please attach. Please insert the file name of the attachment here. | | | What security is required for the connection? The DNO will assume a single circuit connection to the Power Generating Module is required unless otherwise stated below. | Options include: | |-----------------------------------------------------------------------------------| | single circuit connection | | manually switched alternative connection | | automatic switched alternative connection | | firm connection (secure for first circuit outage) | | a flexible or Active Network Management connection (discussion with DNO required) | | Other – please describe | | | | | # Part 1a - additional contact details # **Generator Details** If the Applicant is also the Generator then there is no need to complete this section Generator Name Company Registered No. Postal Address Contact Name **Email Address** Telephone No. **Installer Details (if applicable)** Installer Name Postal Address Contact Name **Email Address** Telephone No. ## **Point of Contact for the DNO** | Select as appr | opriate | |----------------|-------------| | Applicant | | | Generato | r | | Installer | | | Consultar | nt or Agent | # Part 2 # To be completed for all Power Generating Facilities # Site export requirements (net of auxiliary loads): | Firm export requirements (see Note 1): | | | |---------------------------------------------------------------------------------------------------------------------------------|-------------|-----| | Maximum Active Power export (Registered Capacity) | | MW | | Maximum Reactive Power export | | MVA | | Maximum Reactive Power import | | MVA | | Non-firm export requirements: | | | | Maximum Active Power export | | MW | | Maximum Reactive Power export | | MVA | | Maximum Reactive Power import | | MVA | | Site import requirements (Firm import requirements): | | | | Maximum Active Power import | | MW | | Maximum Reactive Power import | | MVA | | Maximum Reactive Power export | | MVA | | Non-firm import requirements: | | | | Maximum Active Power import | | MW | | Maximum Reactive Power import | | MVA | | Maximum Reactive Power export | | MVA | | Total Site maximum fault current of (see Note 2) | ontribution | | | Peak asymmetrical short circuit current at 10ms (ip) for a $3\phi$ short circuit fault at the Connection Point | | kA | | RMS value of the initial symmetrical short circuit current (lk") for a $3\phi$ short circuit fault at the Connection Point | | kA | | RMS value of the symmetrical short circuit current at 100ms (lk(100)) for a $3\phi$ short circuit fault at the Connection Point | | kA | # Power Generating Module interface arrangements (see Note 3) | Means of connection, disconnection and synchronising between the DNO and the Generato | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | | | Commercial Service | | (applicable to Electricity Storage Plant for each | | commercial service / mode of operation) | | Name of the commercial service being provided and name of the company the service is being provided to (eg National Grid) | | | | If the commercial service is being provided via a third party, the contact details for the third party service operator (eg an aggregator) | | | | Is this a service which involves co-ordinated response with other Electricity Storage plant either on the Distribution Network, Transmission System, Private Network or aggregator? | | If yes please provide further details below | | | | | | | | If not a commercial service please describe the operational mode (eg float charge) | | | | | **Note 1 –** This section relates to operating conditions when the Power Generating Module is exporting Active Power. The Active Power export and associated maximum Reactive Power export and/or import should be stated for operation at registered capacity. The firm import / export requirements relate to the capacity available in a first circuit outage event on the DNOs system. The non-firm import / export requirements relate to the capacity available when the DNOs system is intact. **Note 2 –** See Engineering Recommendation G74, ETR 120 and IEC 60909 for guidance on fault current data. Additionally, fault current contribution data may be provided in the form of detailed graphs, waveforms and/or tables. Note that induction motors can contribute to the peak asymmetrical short circuit current at 10ms. If the fault current contribution is solely from Generating Units then this information need not be provided where detailed fault level contribution / impedance data is provided for each Generating Unit in Part 3 or Part 4 of this application form. **Note 3 –** The interface arrangements need to be agreed and implemented between the User and DNO before energisation. Engineering Recommendation G99 6.4.2 refers. # Part 3 To be completed for all Type A, Type B, Type C and Type D Power Generating Modules # The first section of Part 3 is a summary of the Generating Units that comprise the Power Generating Modules, the second section of Part 3 should be completed for each different Generating Unit. (See Note 4) ### **Power Generating Module general data** | ` ' | | • | s. Where the Power G<br>lude the type test refer | • | | |-------------------------------------------|----------------------------------|-------------------------|--------------------------------------------------|-----------------------------------------------|----| | Will any Generati | ng Unit opera | ate in island mode | e? | Yes | No | | Will any Generati | ng Unit supp | ly electricity to or | n-site load? | Yes | No | | | Number of<br>Generating<br>units | Type of prime<br>movers | Energy Source<br>Availability<br>(see Note 5) | Technology<br>Production type<br>(see Note 6) | | | Synchronous<br>Power Generating<br>Module | | | Intermittent Non-intermittent | | | | Fixed speed induction Generating Unit | | | Intermittent Non-intermittent | | | | Double fed induction Generating Unit | | | Intermittent Non-intermittent | | | | Series inverter connected Generating Unit | | | Intermittent Non-intermittent | | | | Electricity Storage<br>Generating Unit | | | Intermittent Non-intermittent | | | | Other (please spec | ify | | | | | | | | | Intermittent Non-intermittent | | | ### Note 4 Synchronous Power Generating Modules are generally synonymous with Generating Unit in EREC G99 except certain cases, such as a Combined Cycle Gas Turbine (CCGT) Module for example. A CCGT Module can be comprised of a number of Generating Units. A Power Generating Facility may be made up of a number of Synchronous Power Generating Modules. Asynchronous or Inverter connected Power Generating Modules are defined as Power Park Modules in EREC G99 and are typically comprised of several Generating Units connected together. A Power Generating Facility could comprise several Synchronous Power Generating Modules and one Power Park Module. The exception to this is when new plant is being connected to a Power Generating Facility where there are Power Generating Modules which were connected under EREC G83 or EREC G59 and EREC G99 should be referred to for more detailed consideration of this. Note 5 - Intermittent and Non-intermittent Generation is defined in EREP 130 as follows: Intermittent Generation: Generation plant where the energy source for the prime mover cannot be made available on demand. Non-intermittent Generation: Generation plant where the energy source for the prime mover can be made available on demand. **Note 6 -** The Production Type should be selected from the list below derived from the Manual of Procedures for the ENTSO-E Central Information Transparency Platform: | Biomass; | Hydro run-of-river and poundage; | |----------------------------|----------------------------------| | Fossil brown coal/lignite; | Hydro water reservoir; | | Fossil coal-derived gas; | Marine; | | Fossil gas; | Nuclear; | | Fossil hard coal; | Other renewable; | | Fossil oil; | Solar; | | Fossil oil shale; | Waste; | | Fossil peat; | Wind offshore; | | Geothermal; | Wind onshore; or | | Hydro pumped storage; | Other. | # **Generating Unit data** # Please complete a separate sheet for each different Generating Unit If you are connecting more than one different Generating Unit you should complete a separate Part 3 form for each different Generating Unit. Master versions of the Part 3 form are separately available for this purpose. # Generating Unit data (please complete a separate sheet for each different Generating Unit) ## **Generating Unit Active Power capability** | Generating Unit descriptor / reference | | |---------------------------------------------------------------------------------------------------------------------------------------------------------|------| | | | | Rated terminal voltage (Generating Unit) | V | | Rated terminal current (Generating Unit) | Α | | Generating Unit registered capacity | MW | | Generating Unit apparent power rating (to be used as base for generator parameters) | MVA | | Generating Unit rated Active Power (gross at generator terminals) | MW | | Generating Unit minimum Active Power (minimum generation) | MW | | Generating Unit Reactive Power capability at rated Active Power (gross, at Generating Unit terminals) | | | Maximum Reactive Power export (lagging) | MVAr | | Maximum Reactive Power import (leading) | MVAr | | Generating Unit maximum fault current contribution (see Note 7) | | | Peak asymmetrical short circuit current at 10ms (ip) for a $3\phi$ short circuit fault at the Generating Unit terminals (HV connected generators only) | kA | | RMS value of the initial symmetrical short circuit current (lk") for a $3\phi$ short circuit fault at the Generating Unit terminals (HV connected only) | kA | | RMS value of the symmetrical short circuit current at 100ms (lk(100)) for a $3\phi$ short circuit fault at the Generating Unit terminals | kA | **Generating Unit Voltage Control** | (to be agreed with the DNO) | | | |-----------------------------------------------------------------------------------------------------------------|---------|------| | If operating in Power Factor control mode, preferred Power Factor | | | | If operating in voltage control mode, voltage set point | | V | | If operating in reactive power control mode, reactive power set point | | MVAr | | Generating Unit Performance Chart attached If yes, please insert the file name of the attachment here | Yes | No | | HV Connected Type A, Type B, Type C and Type Generating Module frequency and excitation | D Power | | | Frequency response Droop setting in LFSM (see Note 8) | | % | | Governor and prime mover model attached (see Note 9) If yes, please insert the file name of the attachment here | Yes | No | | AVR / excitation model attached If yes, please insert the file name of the attachment here | Yes | No | | Type C and Type D Power Generating | | | | Module additional frequency response | | | | Frequency response Droop setting in FSM (if applicable) | | % | | Frequency response mode | FSM | LFSM | | European Specification or other standard to which frequency control device will be designed and operated | | | **Note 7 –** See Engineering Recommendation G74, ETR 120 and IEC 60909 for guidance on fault current data. Additionally, fault current contribution data may be provided in the form of detailed graphs, waveforms and/or tables. **Note 8 –** All Power Generating Modules must operate in Limited Frequency Sensitive Mode (LFSM). FSM capability is mandatory for Type C and Type D. Generators may elect to operate their Power Generating Modules in Frequency Sensitive Mode as agreed in an Ancillary Service agreement with the National Electricity Transmission System Operator. **Note 9 -** Sufficient data should be provided in order to build up a suitable Power Generating Module dynamic model for analysis. Alternatively a 'Black Box' dynamic model of the Power Generating Module may be provided. All models should be suitable for the software analysis package used by the DNO. # Part 4 Relevant section to be completed prior to commissioning for all Type A, Type B, Type C and Type D Power Generating Modules, Electricity Storage and transformers # Please complete a separate sheet for each different Generating Unit There are Part 4 forms for each type of Generating Unit category. If you are connecting more than one different Generating Unit of the same category (eg two different sized synchronous Generating Units) then you should complete a separate Part 4 form for each different Generating Unit. Master versions of the Part 4 form (Parts 4a, 4b, 4c, 4d and 4e) are separately available for this purpose. | Transformer information (please complete a separate sheet for each different transformer) Transformer (stratformer sheet) Transformer (sheet) Tran | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------| | separate sheet for each different transformer) Transformer (serifate) Transformer type (shirt/Station) Number of berind units Type of coding | | | Transformer Identificipi Transformer types (Link'Station) Number of identificial units Type of cooling | | | Transformer type (Lhis Studion) Number of laminol units Type of coding | | | Number of identical units Type of cooling | | | Number of identical units Type of cooling | $\Box$ | | Type of cooling | _ | | Type of cooling | | | | number | | | | | | | | Electrical Characteristics | | | Rated (apparent) power | MVA | | Rated voltage ratio (on principal tap) | kV/<br>kV | | Positive sequence resistance at principal tap | par | | Positive sequence reactance at principal tap | per<br>unit | | Positive sequence reactance at minimum tap | per | | Positive sequence reactance at maximum tap | per | | Zero sequence resistance | per | | Zero sequence reactance | per | | | Unit | | Voltage Control Type of tap changer (on load / off circuit) | | | 7 | | | Tap step size | % | | Maximum ratio tap | % | | | % | | Minimum ratio tap | = " | | Tap position in service (for off load tapchangers only) | % | # Part 4a # Synchronous Power Generating Module data: (please complete a separate sheet for each different Synchronous Generating Unit) | Name(s) / identifiers of Generating Unit(s) | | | |------------------------------------------------------------------------------------|------|---------------| | | | | | Type of Generating Unit (wound rotor, salient pole) | | | | Positive sequence (armature) resistance | | per | | (HV connected generators only) | | unit | | Inertia constant (Generating Unit and prime mover) (HV connected generators only) | | MWsec<br>MVA | | Direct axis reactances | | | | Sub-transient (X"d) – unsaturated / saturated | | per<br>unit | | Transient (X'd) – unsaturated / saturated (HV connected generators only) | | per<br>unit | | Synchronous (Xd) – unsaturated / saturated (HV connected generators only) | | per<br>unit | | Time constants: | | | | State whether time constants are open or short circuit (HV connected only) | open | short circuit | | Direct-axis sub-transient – unsaturated / saturated (HV connected generators only) | | s | | Direct-axis transient – unsaturated / saturated | | S | ## Part 4b # **Power Park Module model data:** **Fixed speed induction Generating Units** (see Notes 10 and 11) (please complete a separate sheet for each different Generating Unit) | Name(s) / identifiers of Generating Unit(s) | | |---------------------------------------------------------------------------------------------|-----------------------------------| | Magnetising reactance (HV connected generators only) | per<br>unit | | Stator resistance (HV connected generators only) | per | | Stator reactance<br>(HV connected generators only) | per<br>unit | | Inner cage or running rotor resistance (HV connected generators only) | per<br>unit | | Inner cage or running rotor reactance (HV connected generators only) | per<br>unit | | Outer cage or standstill rotor resistance (HV connected generators only) | per<br>unit | | Outer cage or standstill rotor reactance (HV connected generators only) | per<br>unit | | State whether data is inner-outer cage or running-standstill (HV generators connected only) | inner-outer cage running-standsti | | Number of pole pairs | numbe | | Gearbox ratio | numbe | | Slip at rated output<br>(HV connected generators only) | % | | Total effective inertia constant (generator and prime mover) (HV connected generators only) | MWse<br>MVA | # Shunt capacitance connected in parallel at % of rated output: Provide as values below or attach a graph | If attaching a graph, please insert the file name of the attach | nment here | |--------------------------------------------------------------------------------------------------------------------------------------------|------------| | | | | Starting | kVAr | | 20% | kVAr | | 40% | kVAr | | 60% | kVAr | | 80% | kVAr | | 100% | kVAr | | Active power and reactive power: Provide as values below or attach a graph If attaching a graph, please insert the file name of the attach | nment here | | Active power and reactive power import during start-up | MW-<br>MVA | | Active power and reactive power import during switching operations eg '6 to 4 pole' change-over (HV connected generators only) | MW-<br>MVA | | Under voltage protection setting & time delay | | | Per I Init V | S | **Note 10 –** Asynchronous generators may be represented by an equivalent synchronous data set. **Note 11 –** Provide the above data for each asynchronous generation set based on the number of pole sets (ie two data sets for dual speed 4/6 pole machines). ## Part 4c # **Power Park Module model data:** # **Doubly fed induction Generating Units** # (please complete a separate sheet for each different Generating Unit) | Name(s) / identifiers of Generating Unit(s) | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------| | | | | Magnetising reactance | per<br>unit | | Stator resistance | per<br>unit | | Stator reactance | per<br>unit | | Running rotor resistance | per<br>unit | | Running rotor reactance | per<br>unit | | Standstill rotor resistance | per<br>unit | | Standstill rotor reactance | per<br>unit | | State whether data is inner-outer cage or running-standstill inner-outer cage | | | Rotor current limit | A | | Number of pole pairs | nur | | Gearbox ratio | nur | | Generator rotor speed range – Minimum to rated speed | rpm | | Electrical power output versus generator rotor speed please a Please insert the file name of the attachment here | ttach a graph or table | | Total effective inertia constant at rated speed (generator and prime mover) | MV<br>MV | | Number of operations of fast fault current injection that can<br>be sequentially accomplished and any limitations on time,<br>thermal limitations, protection etc | nur | | | | ## Part 4d # **Power Park Module model data:** **Series inverter connected Generating Units** (non Electricity Storage) (please complete a separate sheet for each different Generating Unit) | Name(s) / identifiers of Generating Unit(s) | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------| | | | | Total effective inertia constant. HV connected generators only | MWsec<br>MVA | | Number of operations of fast fault current injection that can<br>be sequentially accomplished and any limitations on time,<br>thermal limitations, protection etc. | number | | | | ## Part 4e # **Power Park Module data:** # **Electricity Storage plant data** # (please complete a separate sheet for each different Generating Unit) | Name(s) / identifiers of Genera | ating Unit(s) | | | | |-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|------------------|--------------| | | | | | | | Total effective inertia constant | | | | MWsec<br>MVA | | Description of Dynami(Active Power) | ic Requireme | ents | | | | mport: power ramp rate (posi | tive) | | | MW/<br>sec | | mport: power ramp rate (nega | ative) | | | MW/<br>sec | | Export: power ramp rate (posi | tive) | | | MW/<br>sec | | Export: power ramp rate (nega | ative) | | | MW/<br>sec | | f the power swing will transition | • | export or vice-v | ersa please stat | | | | MW | | | Up/down/both | | For the intended control mode<br>known technical or operational<br>to operate at a Power Factor of<br>measured at the Connection For the Yes No | al requirements? Foother than that wh | or example the | scheme may be | e required | | f yes please provide further do | etails below | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | # **Example of Ramp Rate / Total Power Swing** ### A - Example of ramp which transitions from import to export Ramp rate (Positive) = (2+4) MW / 0.5 sec = 12 MW per sec Total power swing = (2+4) MW = 6 MW ### **B** - Example of ramp during export Ramp rate (Negative) = (4-2) MW / 1 sec = 2 MW per sec Total power swing = (4-2) MW = 2 MW # Part 4f # Transformer information (please complete a separate sheet for each different transformer) | Iransformer identifier(s) | | |---------------------------------------------------------|-------------| | Transformer type (Unit/Station) | | | | | | Number of identical units | numl | | Type of cooling | | | Electrical Characteristics | | | Rated (apparent) power | MVA | | Rated voltage ratio (on principal tap) | kV/<br>kV | | Positive sequence resistance at principal tap | per<br>unit | | Positive sequence reactance at principal tap | per<br>unit | | Positive sequence reactance at minimum tap | per<br>unit | | Positive sequence reactance at maximum tap | per | | Zero sequence resistance | per | | Zero sequence reactance | per unit | | Voltage Control | | | Type of tap changer (on load / off circuit) | | | Tap step size | % | | Maximum ratio tap | % | | Minimum ratio tap | % | | Tap position in service (for off load tapchangers only) | % | | Method of voltage control (HV connected only) | | | Earthing Arrangements | | |----------------------------------------------------|--| | Winding configuration (eg Dyn11) HV connected only | | | | | | | | | | | | Method of earthing of high-voltage winding | | | | | | | | | | | | Method of earthing of low-voltage winding | | | | | | | | | | | # Part 5 # Additional data which may be required by the DNO before Final Operational Notification is issued # Part 5a | <b>Total Power Generating Facility output at Minimun</b> | n | |----------------------------------------------------------|---| | Generation (net of auxiliary loads) | | | Generation (net of auxiliary loads) | | | |---------------------------------------------------------------------------------------------|--------------|-------------| | Minimum Generation (minimum Active Power export) | | MW | | Maximum Reactive Power export | | MVAr | | Maximum Reactive Power import | | MVAr | | Part 5b | | | | Power Generating Facility Maximucontribution – additional information | | t | | Short circuit time constant T", corresponding to the change from lk" to lk <sub>(100)</sub> | | S | | Positive sequence X/R ratio at the instant of fault | | number | | Short circuit ratio | | number | | Part 5c | | | | HV connected Synchronous Powe Module additional data | r Generating | | | Quadrature axis reactances | | por | | Sub-transient (X"q) – unsaturated / saturated | | per<br>unit | | Transient (X'q) – unsaturated / saturated | | per<br>unit | | Synchronous (Xq) – unsaturated / saturated | | per<br>unit | | Quadrature axis time constants. | | | |-------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------| | State whether time constants are open or short circuit | open circuit | short circuit | | Direct-axis sub-transient – unsaturated / satu | rated | s | | Direct-axis transient – unsaturated / saturated | t c | S | | Other | | | | Stator leakage reactance (unsaturated) | | per<br>unit | | Zero sequence resistance (earthed star only, any neutral earthing resistance) | including | per<br>unit | | Zero sequence reactance (earthed star only, i any neutral earthing reactance) | ncluding | per<br>unit | | Negative sequence resistance | | per<br>unit | | Negative sequence reactance | | per<br>unit | | Rated field current | | А | | Field current open circuit saturation curve (fro Please provide a graph and insert the file name | | terminal voltage) | | Potier reactance (only required if the saturation factor is available) | ole) | per<br>unit | | Saturation factor (pu field current to produce 1.2pu terminal voltage on open circuit) | | per<br>unit | | Part 5d | | | | Wind Turbine Power Park | Module Outpu | t data | | For wind turbines only - IEC 61400-21 ( P <sub>60</sub> and P <sub>0.2</sub> ) Maximum measured Active Power P <sub>60</sub> | | MW | | Maximum measured Active Power P <sub>0.2</sub> | | MW | | | | | ## Part 5e # Power Park Module model data: HV connected fixed speed induction Generating Units additional data | Inertia constant of the generator rotor | MWsec/<br>MVA | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------| | Inertia constant of the prime mover rotor | MWsec/<br>MVA | | Equivalent shaft stiffness between the two masses | Nm/ Electrical radian | | Describe method of adding star capacitance over operating range. If electronic power factor control (eg SVC) is installed, provide details of the operating range and characteristics eg pf or MVAr range - operating regime: constant or voltage set-point / slope and response times. | | | | | ## Part 5f # Power Park Module model data: HV Connected Doubly fed induction Generating Units additional data | Inertia constant of the generator rotor at rated speed | MWsec/<br>MVA | |----------------------------------------------------------|--------------------------| | Inertia constant of the prime mover rotor at rated speed | MWsec/<br>MVA | | Equivalent shaft stiffness between the two masses | Nm/ Electrical<br>radian | # Part 5g # Power Park Module model data: Series inverter connected Generating Units (non Electricity Storage) additional data | Gearbox ratio | | | |------------------------------------------------------------------------------------------------------------------------|----------------------|----------------| | Generator rotor speed range (minimum to rated speed) | | rpm | | Electrical power output versus generator rotor speed Please atta<br>Please insert the file name of the attachment here | ich a graph or table | | | Inertia constant of the generator rotor at rated speed | | MWsec/<br>MVA | | Inertia constant of the prime mover rotor at rated speed | | MWsec/<br>MVA | | Equivalent shaft stiffness between the two masses | | Nm/ Electrical |