

Wednesday 7th December 2022

SP Energy Networks Preparing For Net Zero Conference Electrification of Transport and Heat

Thank you for joining - this session will start at 14:00.

Develop a network that is ready for Net Zero Be a trusted partner for customers, communities and stakeholders Ready our business for a digital and sustainable future

AGENDA – Electrification of Transport and Heat

14:00 – Welcome, Housekeeping & Safety Contact

14:10 – iDentify App

14:30 – Project CHARGE: ConnectMore Interactive Mapping Tool

15:00 – Heat Balance

15:30 - ICE

16:00 - Close

Develop a network that is ready for Net Zero

Be a trusted partner for customers, communities and stakeholders Ready our business for a digital and sustainable future

Housekeeping

Thank you for taking the time to attend today.

- This session is being recorded.
 - please let Louise know if you are not comfortable with this and we will take your comments in the Chat section
- Please try and keep background noise to a minimum by using the mute button when you are not speaking.
- We are keen for this to be an interactive session as your feedback is important.
 please raise your hand electronically or use the chat function if you would like to ask questions to the speakers

We value your opinions, and we are keen to generate an open session with opportunities to hear your feedback.

Safety/Environmental Contact

CRIVEL OF INQUIRY Y SAFETY Y HEALTH Y ENVIRONMENT Y DOCUMENTATION TECHNICAL ScottishPower Express Reference no.: EXP-11-XXX Incident: XX Date: 01/11/2022

SPENERGY NETWORKS

Secondary Substation Earthing: High Risk Areas

Designers must ensure that the earth potential rise (EPR) in a new secondary substation during an HV fault will not lead to unsafe step and touch potentials for network operators or the public. Additionally, high or extremely high EPR must not be transferred to a customer's LV earthing terminal.

High Risk Area

High risk areas are defined in Section 16 of EART-03-003 and extra care should be taken in these circumstances. Some of the most dangerous situations can occur when LV and HV earthing systems are combined in ground mounted substation fed by overhead lines. This risk is further elevated when such substations supply customers with wet room areas, outdoor play areas, hazardous zones such as fuel stations or areas with livestock. The combination of high or extremely high EPR and higher risk factors for people with wet feet, combustion of flammable fuel or livestock can present a significant danger which should be addressed.

Secondary substations installed near existing substations at 33kV, 132kV or National Grid ESO sites can also be problematic. It's important to understand the implications of how a fault at these higher voltage substation can lead to EPR which impacts the safety of the earthing system in the new secondary substation. A new document providing design solutions is currently being written but in the meantime it is important to discuss directly with an earthing specialist.

Recommendations and action points

- Look out for network configurations with OHL feeding ground mounted substations and check if the HV/LV earthing systems are combined. Notify your local design team of any potential issues so that a full earthing study can be carried out.
- Ensure you are familiar with EART-03-003 and escalate any issues to the HV earthing sub group via the local representative for your area.
- Designers should ensure that standard earthing design assessments are recorded in accordance with section 18 of EART-03-003. A new template with a 4 step approach has been circulated to all SPEN designers and ICP's.
- Delivery project managers should ensure that all new substation installations are measured and recorded in accordance with section 17 of EART-03-003.

Originator: Neil Woodcock	Approved by: XX	Date: 01/11/2022
	Internal Use	

- Change from 1Ω rule for combine LV/HV earthing systems
- EART-03-003 standardised designs
- High risk areas Section 16 EART-03-003
 - Wet rooms
 - Fuel stations
 - Play areas
 - Livestock
 - Ground mounted substations fed via HV overhead lines
 - Other higher voltage substation sites
- Recommendations
 - HV earthing sub group
 - Recording of standardised design approach Section 18 EART-03-003
 - Recording of new substation earthing installations Section 17 EART-03-003

Michael Alexander, SPEN Business Change Project Manager

iDentify App

Develop a network that is ready for Net Zero Be a trusted partner for customers, communities and stakeholders Ready our business for a digital and sustainable future

You do the install, iDentify does the admin.

The new way to notify the network.

(iD

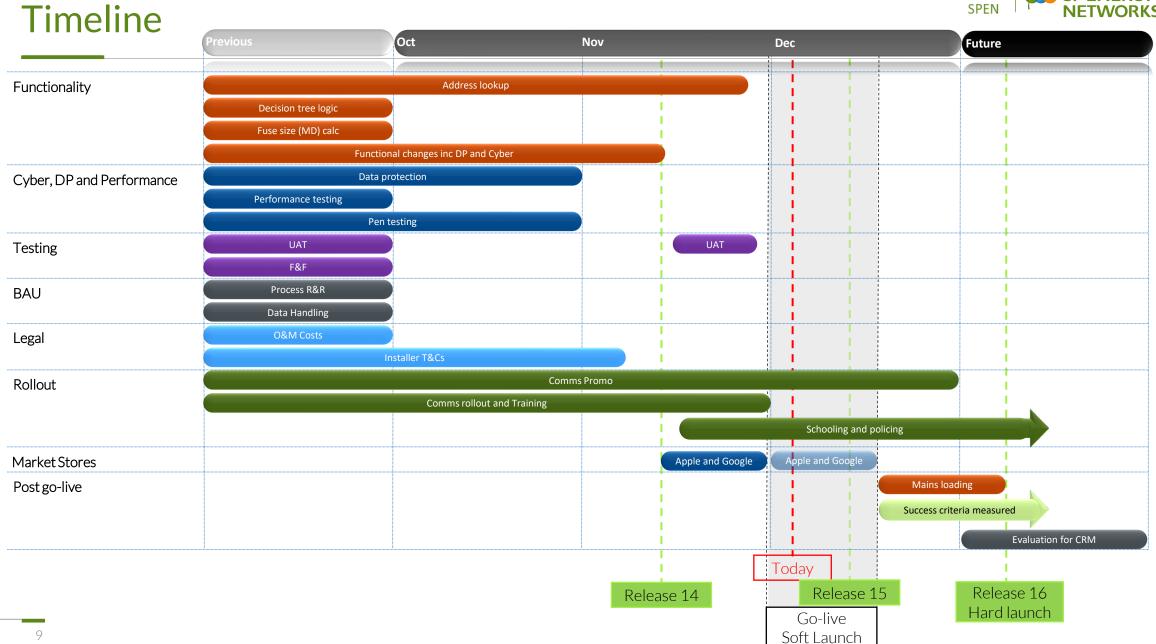
iDentify - Project

EVCP, HP and G98 Information

iDentify Vision...

7

Digitise the ENA paper forms providing installers with a maximum demand calculator and cut-out recognition using AI, while crowdsourcing data on high load customer devices enabling an enriched view of the LV network.


Registration	Surv	vey – App or web			Connect and notify	Installation – app only
Who's installing?	Site fit for installation?	What's being installed?	Where?		Allokay	Confirm and recheck
	<image/>			Survey result	Apply to connect - SPEN intervene Either • Looped service • Fuse upgrade • Cut-out change • Device not to standard	stallation informati
Verified and reverified sourceTrusted list	Fuse and MD calcAl Cut-out check	 ENA asset database lookup Add those that don't exist 	• Address checked in ECOES - routing		Rules based decision made on app	 Confirm original device install Check no changes on site
	Survey Outputs to SPENAll existing household informationTrusted installer or not	n. Generation, Heating type, EVCI	² etc			 Install Outputs to SPEN New device being installed Cut-out/address proximity check

iDentify - Rollout

D e c	1 Engage directly with specific installers	 Tutorial video created Direct e-mail to installers Webinar Web landing page - www.spenergynetworks.co.uk/identify
J a n /	2 External media/PR; website & social; internal comms	 Press release Promotional video Social media Internal comms – The Wire etc
F e b	3 One month external marketing campaign	 Paid media campaign Number of formats across digital display adverts Campaign performance monitored
M a r	4 Ongoing promotion of benefits to encourage wider use	 Lessons learned Push for remaining installers Consider further campaigns to influence key stakeholders Showcase at industry events

End

John Orr, Project Manager, CHARGE

CHARGE Project ConnectMore Interactive Mapping Tool

Develop a network that is ready for Net Zero

Be a trusted partner for customers, communities and stakeholders Ready our business for a digital and sustainable future

Challenges giving businesses the tools to invest in public charge points As of 2021 the UK had around **25,000** public charge points CHARGE ġ, Per 100,000 people: Scotland - 43 North West - 21 North East - 32 Northern Ireland - 17 Yorkshire and the Humber - 20 East Midlands - 24 West Midlands - 22 East of England - 22 Wales - 27 By 2030, 10 times the London – 80 South West - 29 current charging England - 34 infrastructure needed South East - 33

Accelerate the connection of public EV charging infrastructure across SPM

April 2019 – March 2023

Transport model

Lawrence Chittock

Smart charging solutions

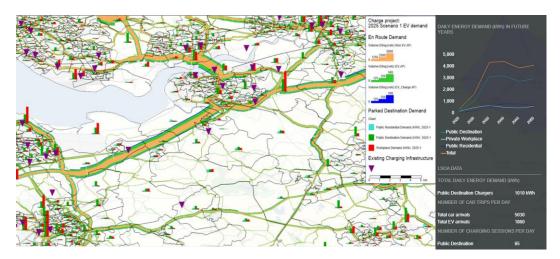
smarter gridsolutions

Callum Watkins

Tim Butler

Modelling Future EV Patterns

- Transport model built to cover SPM region, including full representation of population and mobility patterns
- Modelled travel pattern data and distribution of EV ownership helps determine:
 - Where EVs are likely to be driven and for what purpose
 - How far they travel & energy consumed
 - When and where they might require charging
 - **How long** the car is parked and the electricity required to charge


SP ENERGY NETWORKS

PTV GROUP

smarter aridsolutions

Transport Model Final Report Method, Findings and Conclusions

Where, how many, and what type of charging points do we need?

- Charging infrastructure is necessary to **enable EV usage** and encourage uptake
- Understanding the scale of need can help planners prioritise intervention
- Knowing where charge points are needed can help identify gaps in supply
- Understanding population segmentation highlights which drivers will rely on public infrastructure

Charge includes three methods:

- Method 1: Strategic transport and network planning.
- Method 2: Tactical solutions to support EV charging connections.
- Method 3: The development of the 'ConnectMore' software tool.
- 1. Charge Point Data Analysis
 - 2. Desktop and Virtual Trial Design and Implementation
 - 3. Flexible Connection Design
 - 4. DNO Policy Recommendations

5. ConnectMore Integration

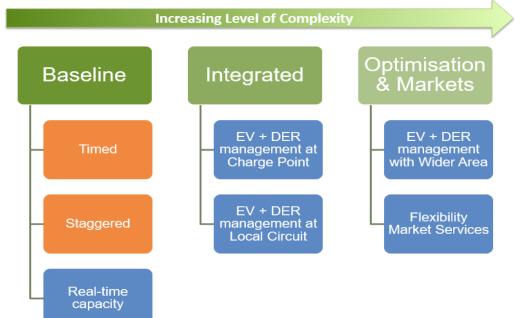
Smarter Grid Solutions (SGS) is responsible for Method 2 which designs and demonstrates Smart Charging Connection (SCC) Solutions that enhance the flexibility of EV charging and support the improved hosting of charging infrastructure without expensive reinforcement.

Smart Charging Connections (SCCs) are innovative connection solutions that control EV chargepoint energy consumption based on real-time network loading conditions.

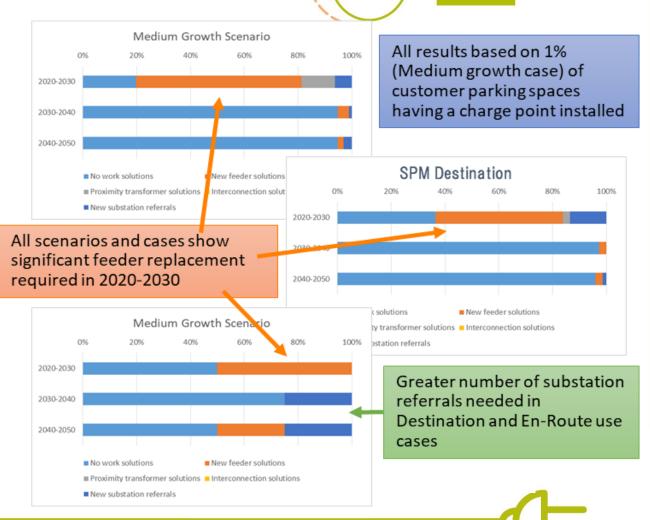
SCCs offer a novel planning methodology for the smart, flexible management of EV chargepoints:

- Maximising utilisation of network infrastructure
- Functioning as an alternative to network reinforcement
- Accelerating EV chargepoint roll-out

SCCs are separated into two categories: DNO-Led and Customer-Led which provides different architectures and increased utilisation of network capacity


Charge EV Capacity Headroom Analysis considered existing headroom, EV charger deployment scenarios and conventional and smart charging solutions

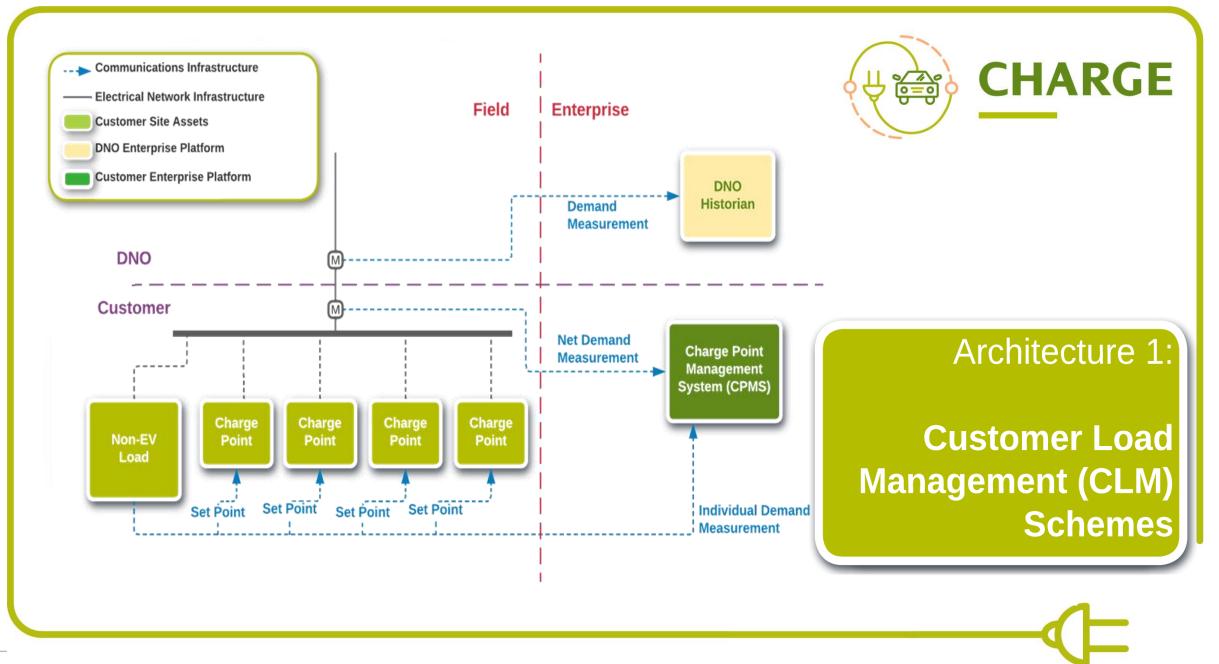
Conventional solutions considered by SPM planners when network capacity headroom is spent.

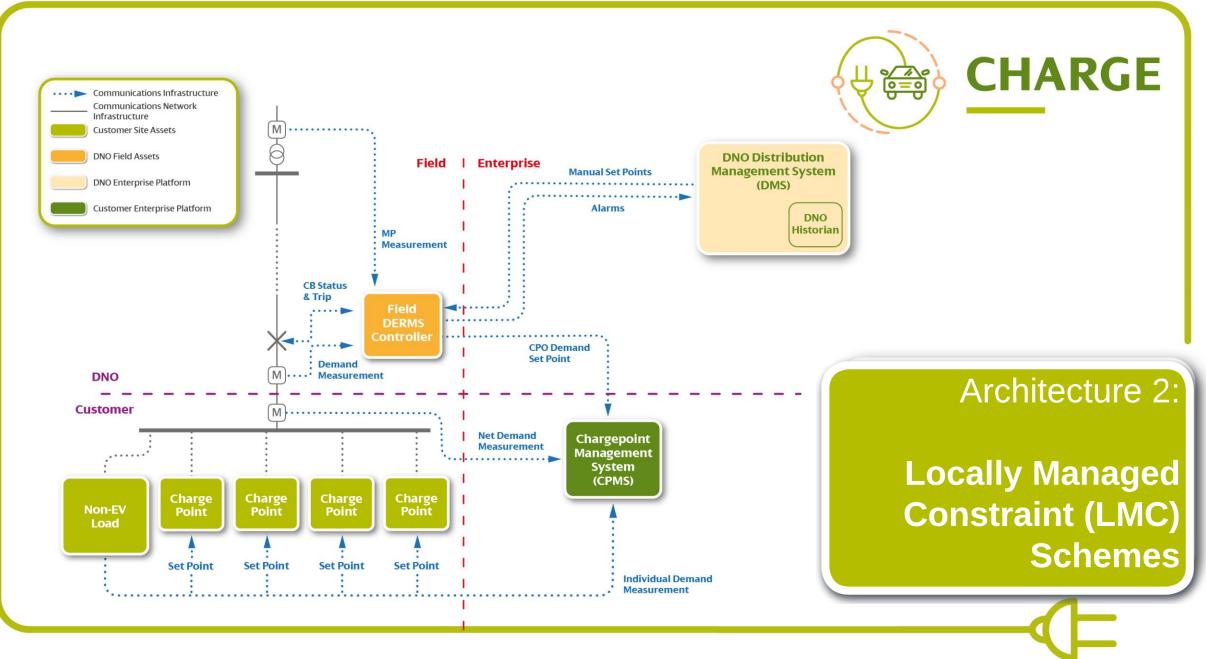

EV smart charging solutions considered by Charge project team as alternative to conventions reinforcement.

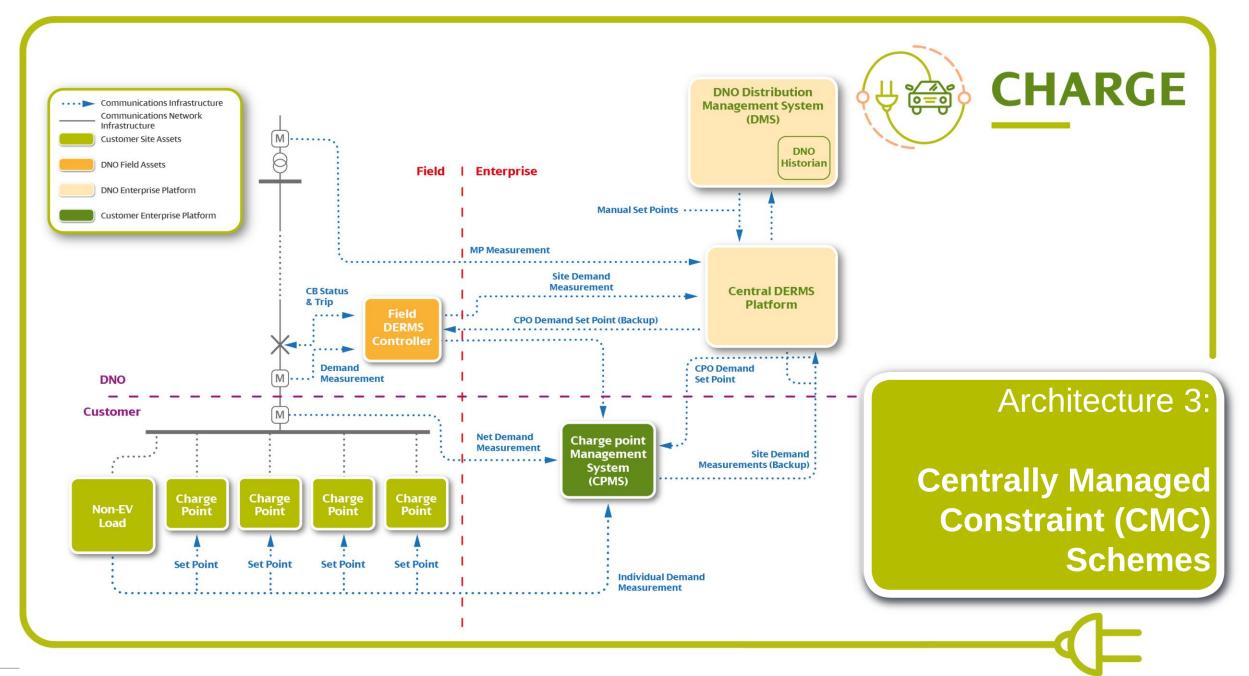
	Connect to existing feeder to nearest Tx	Construction of new network circuits or upgrading existing cables to enable connection to the nearest Tx			
LV Us woods	Connect to proximity Tx	If the nearest Tx is at capacity, connect in to next closest Tx			
LV Upgrade	Interconnection between closest Tx and Proximity Tx	Provide interconnection between nearest Tx and Proximity Tx to enable load sharing			
	New 500kVA substation	Construction of new 500kVA substation			
HV Upgrades	New Circuits or upgrade existing circuit	Adding new feeder to existing substation			
	New Substation	Construction of new HV Primary substation			

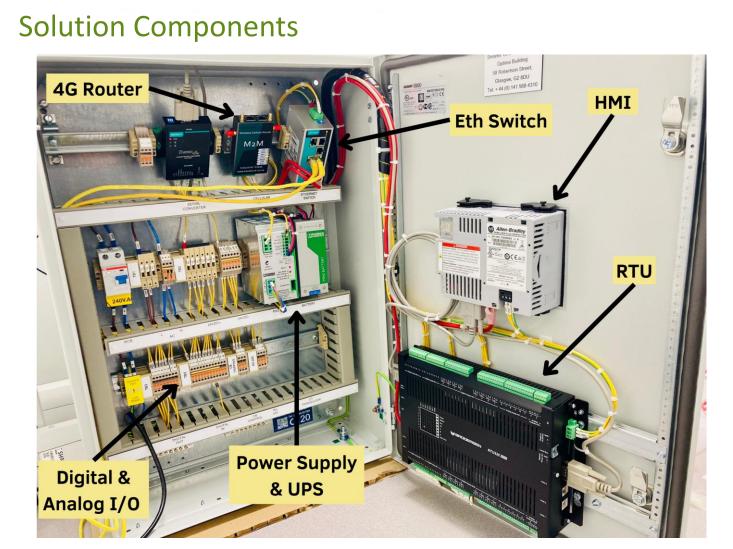
Significant capacity issues to be resolved in LV and HV networks in 2020-2030 period

- Based on the outcomes from Medium EV growth scenario (i.e. 1% of parking spaces are fitted with a charge point) a significant amount of network reinforcement is required (shown in orange bars).
- Majority of the network reinforcements are required in the planning period 2020-2030
- There is a clear impact to existing HV network capacity margins with some HV upgrades required.
- Higher rated En-Route and Destination chargers create more need for substation upgrades (through 'referral' process – shown in darker blue bars).

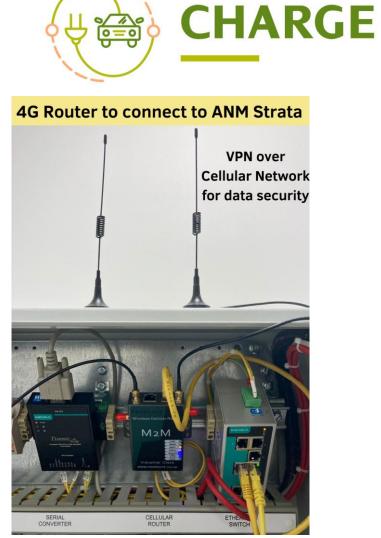

CHARGE


What are Smart Charging Connections (SCCs)?




Charge has consulted with stakeholders across the distribution networks and Electric Vehicle domain, using learning from this process to refine the SCC offerings. This has established two forms of SCC:

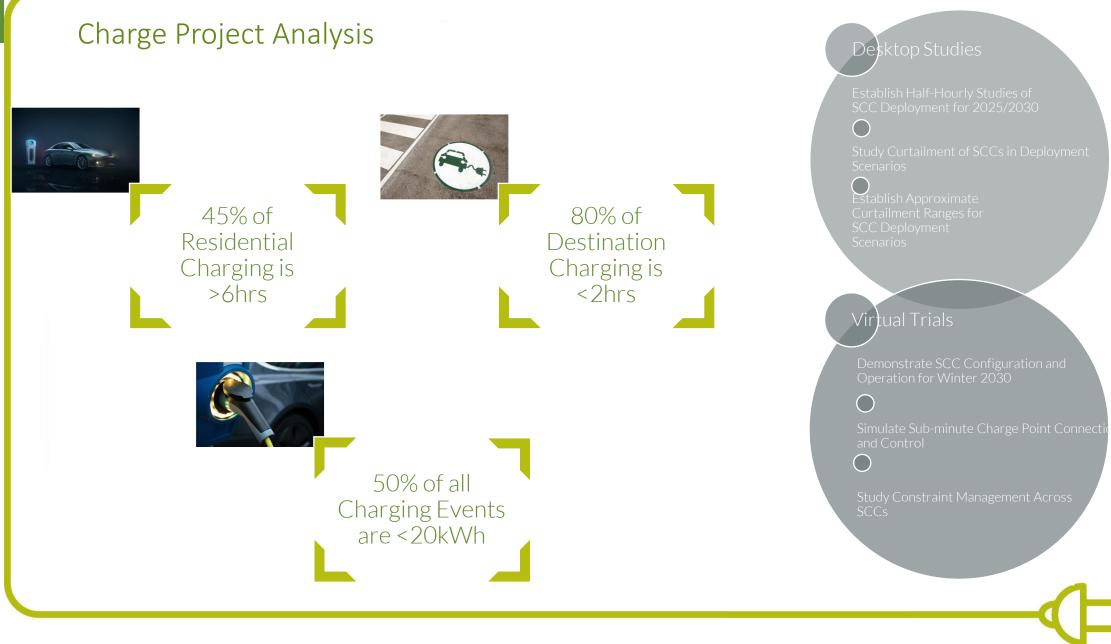
- **Customer-Led SCCs**: where the customer is responsible for managing EV CP consumption against pre-agreed, fixed import limitations; and
- **DNO-Led SCCs**: where the customer must manage EV CP consumption against a varying import threshold that reflects prevailing network conditions.



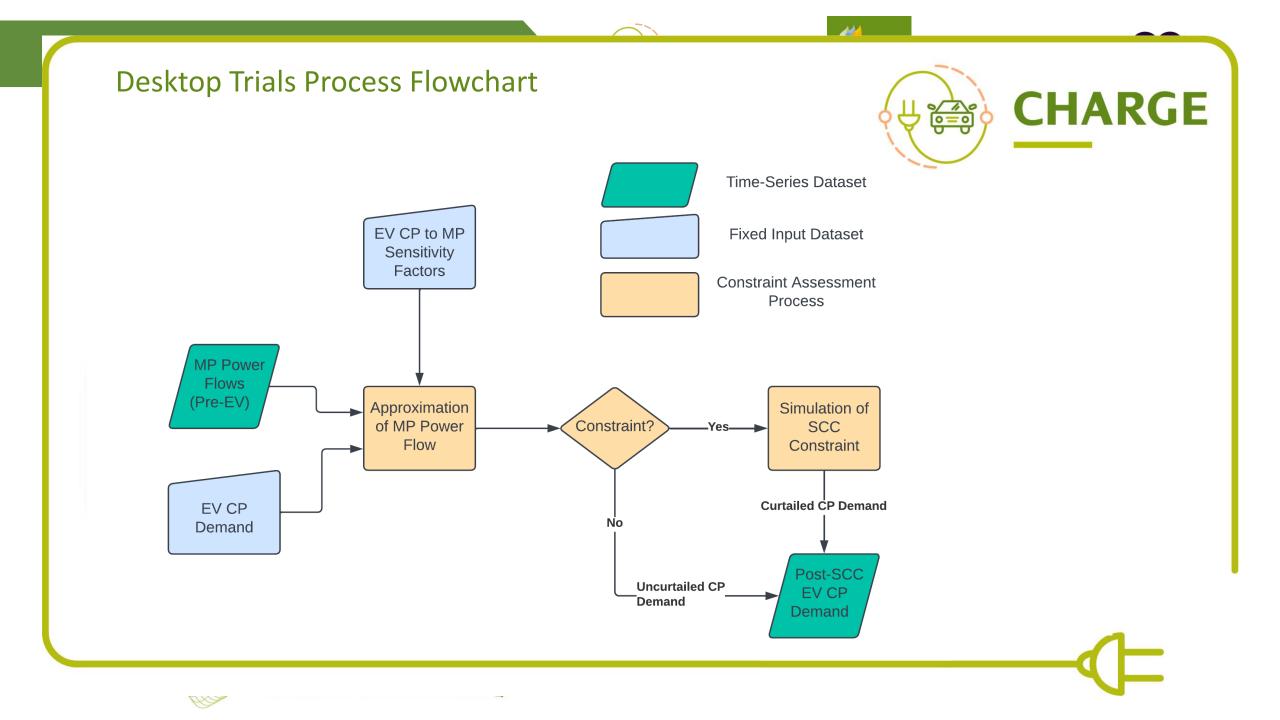
ANM Element Panel - Inside

What challenges do Smart Charging Connections face? Commercial Challenges

- Economic: Non-firm connection vs traditional reinforcement question especially for low voltage applications where near real-time monitoring would need to be installed
- Legal: Existing connection offers not fit for SCC purpose
- Policy & Process: DNO Policies need improved to accommodate SCCs


- Performance: Charging infrastructure must be able to react fast enough to ensure safe network operation
- Curtailment Studies: Customer/DNO needs tools to assess the likely curtailment of EV sites
- Network Security: There are no long terms studies on reliability of EV control systems and failsafe provision for SCCs

) E E E E E


CHARGE

- Customer and End-User Acceptance: Will customers be satisfied with charging service? Are customers willing to have DNO control?
- Awareness: Supply chain delivery needs to be informed to accommodate SCCs

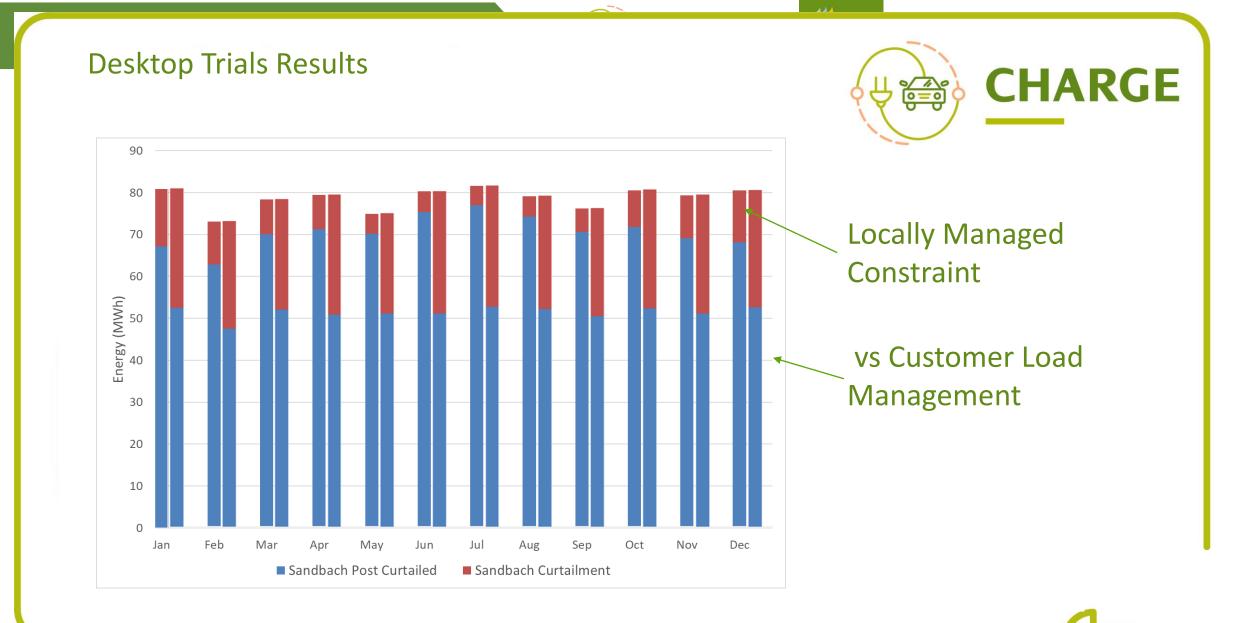
25

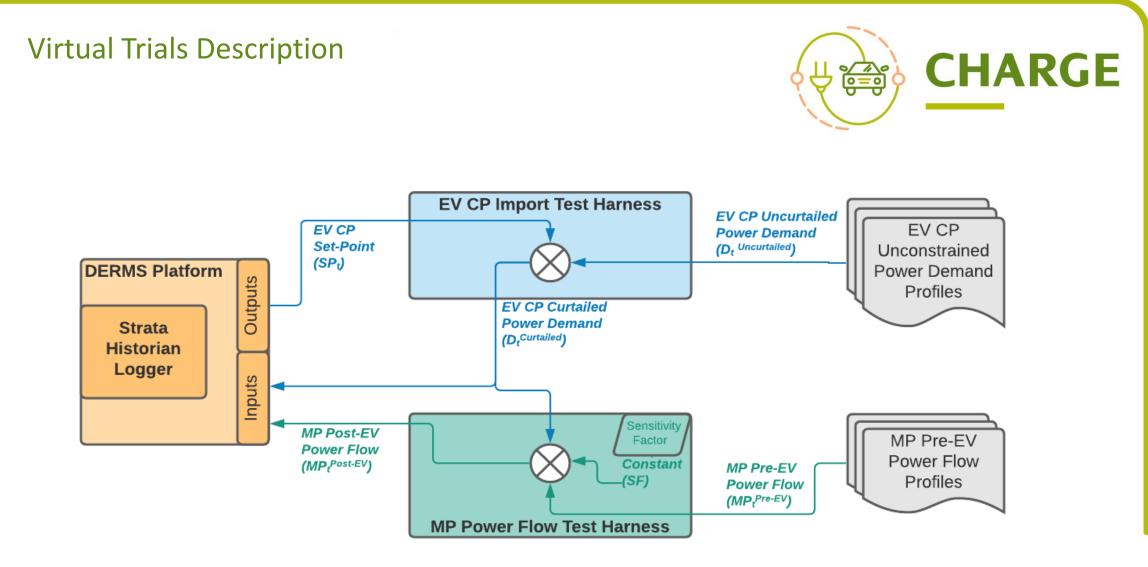
Here

Case Study – Sandbach LMC Scheme

- Market Town in Chester East local authority close to the M6 Motorway
- Population of 18,000
- Small market town for shoppers and visitors as well as regular commuters
- Proposed 500 kVA Public Destination EV Charging Site

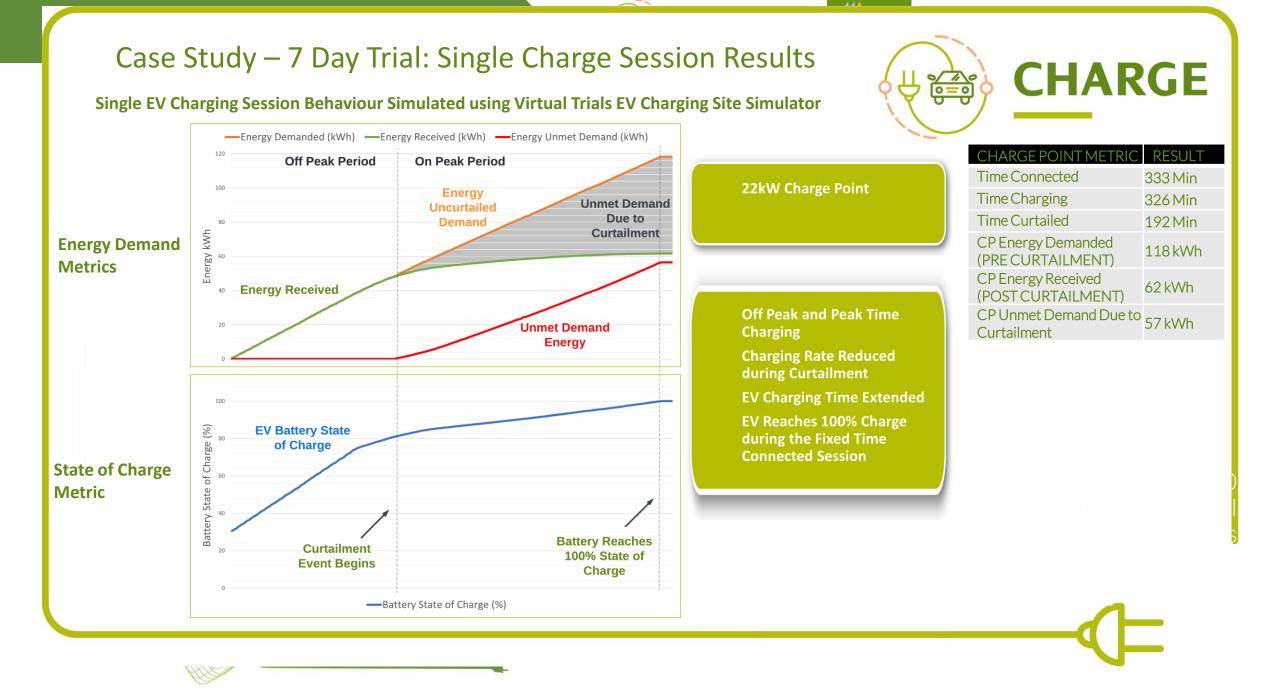
CHARGE




Desktop Trials Results

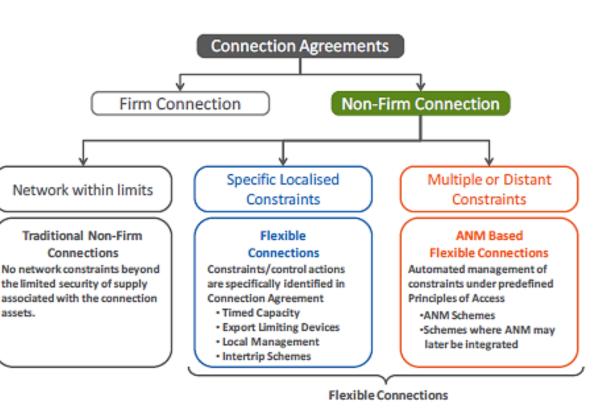
		Scenarios							
		Distribution Substation Constraint				Primary Substation Constraint			
Site	Utilisation	LMC 2025	LMC 2030	CLM 2025	CLM 2030	CMC 2025	CMC 2030	CLM 2025	CLM 2030
Sandbach	Pre- Constraint	10.9%	21.3%	10.9%	21.3%	10.9%	21.3%	10.9%	21.3%
	Post- Constraint	10.7%	19.1%	10.2%	13.9%	10.4%	12.3%	0.0%	0.0%

HAR



HE

No Curtailment	Curtailment	No Curtailment		CHARGE SITE OVERALL METR	IC RESUL
				Number Curtailment Events	3
		ANM Trip		Total Curtailment Time	701 M
		ANM Trip	ANM Management	Total Demand Energy (PRE CURTAILMENT)	3507 k
	the second and a second a second	Under ANM Control	Zones	Total EV Load Demanded (POST CURTAILMENT)	1713 k
hu	μЛ	M N Total Curtailed		Unmet Demand Due to Curtailment	1795 k
	month the month of the second	Demand After ANI	И	% Unmet Demand Relative to Total Demand	51.2%
		My My Man			


ANM Curtailment Operations Sequence (Single Day)

DNO Policy Recommendations

- Policies need to accommodate flexible connection offers for EVs
- DNOs need a method to estimate curtailment and provide transparency of assumptions
- Updates to policies must allow SCC assessment to be achievable within mandated period or be considered as an additional contractual measure
- ESDD-01-009 Flexible Connections and Principles of Access
- Third-Party Design and Connections Related Policies
- Engineering Recommendation P2/7 Security of Supply Standard
- Engineering Recommendation G100, Issue 2

CHARGE

Customer Behaviours

- "Faster installation of public charging infrastructure can only be a good thing. Most drivers don't need full charge and are not needing rapid charging as they would leave them for several hours anyway."
- The most stressful aspect of EV ownership is **not being able to find a charge point** on a long journey. Having to spend **longer charging is not a problem**, compared to driving on and on again to find somewhere to simply plug in and start."
- "Seeing more charging points around will increase the likelihood of people transitioning to EVs.
 One of the biggest blockers is the perception of insufficient access to charging infrastructure, so the more charging points that are 'seen', the more people will be willing to consider an EV."

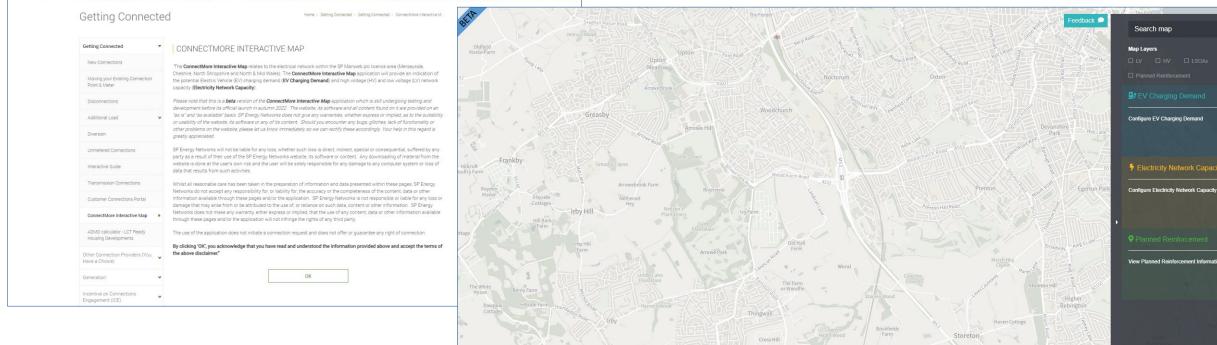
Customer Behaviours

- "Smart public charge points will cause **chaos and confusion** and risk slowing mass adoption of electric vehicles."
- *"People will not accept having their charge restricted under any circumstances; public charging needs to be available* to those who need it when they need it."
- *"Curtailment of chargers at en route locations is totally unacceptable* as the objective is to charge quickly and continue with the onward journey."

In Summary

- All models are imperfect But they are useful.
- Understanding behaviour of EV drivers is key to unlocking grid capacity.
- Accurate network models and forecasts inform smarter planning choices.

ConnectMore - Overview



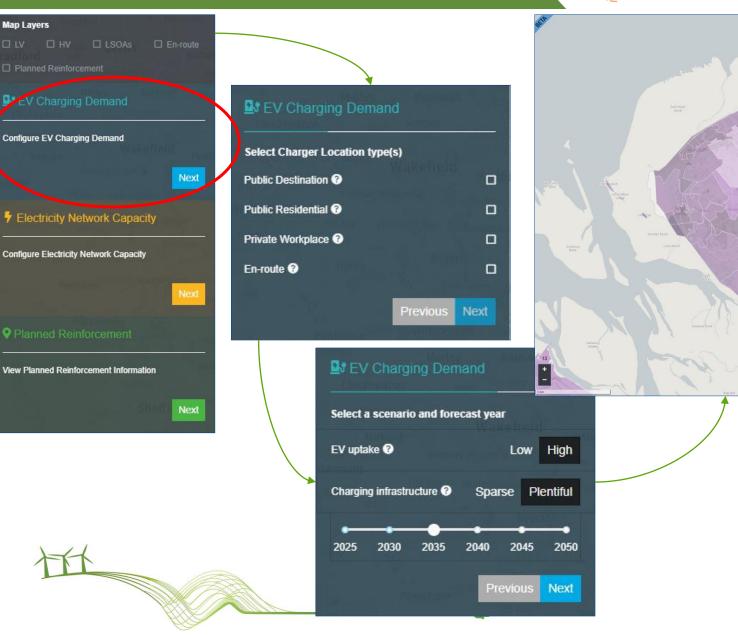
SP ENERGY NETWORKS

ScottishPower | Iberdrola.com Q <

ABOUT US | POWER CUTS | CUSTOMER SUPPORT | GETTING CONNECTED | CORPORATE GOVERNANCE | INVESTMENT & INNOVATION

14

One click feedback - how would you rate this tool?


www.spenergynetworks.co.uk/pages/charge.aspx

ConnectMore HeatMap: EV Charging Demand

ConnectMore HeatMap: EV Charging Demand




smarter gridsolutions

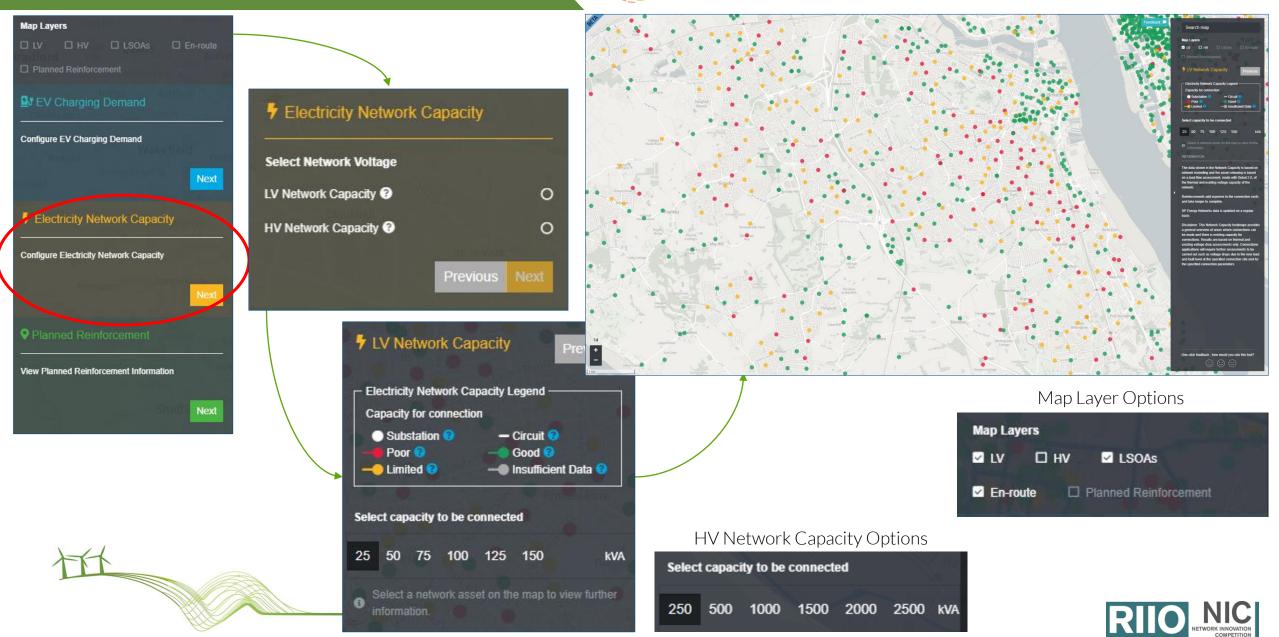
SOA INFORMATION

-Over 6 hours

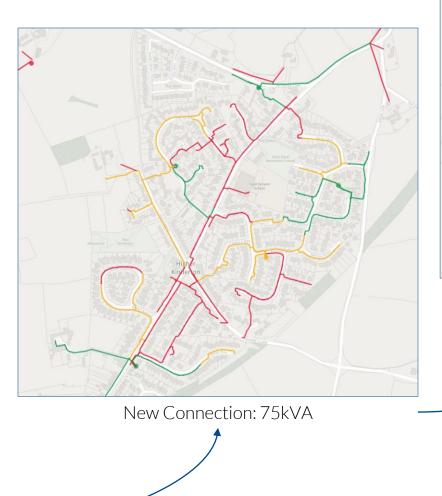
TOTAL DAILY ENERGY DEMAND (kWh)

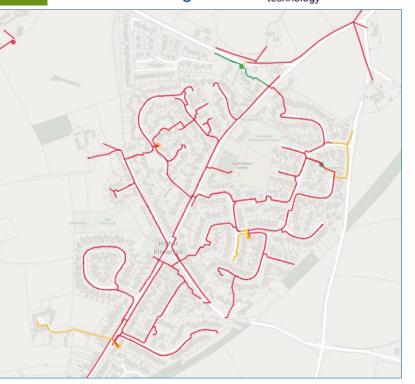
Public Destination Chargers Public Residential Chargers	160 kWh 190 kWh
NUMBER OF CAR TRIPS PER D	YAC
Total car arrivals	2040
Total EV arrivals	1380
NUMBER OF CHARGING SESS	IONS PER DAY

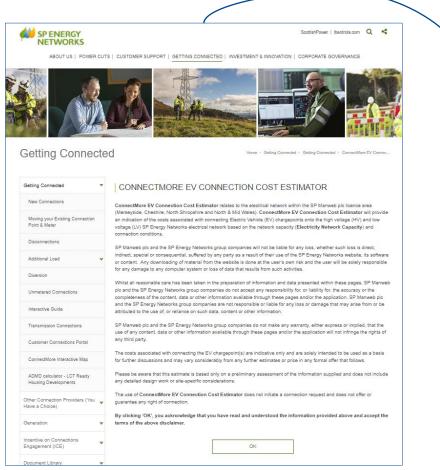
c Destination	10
ic Residential	20


Publ Publ

ConnectMore HeatMap: Distribution Network




ConnectMore HeatMap: Distribution Network



New Connection: 25kVA

ConnectMore Cost Estimator

Routed through the Getting Connected Portal

6

Where do you want to connect?

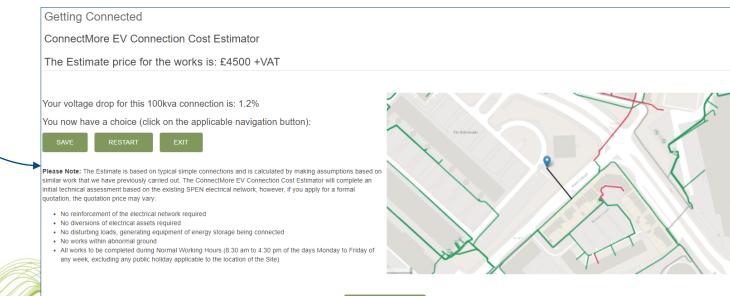
	etting Connected			
Coi	onnectMore EV Connection Cost	t Estimator		
Ple	ease tell us your Site Address			
	rt typing your address to look it up: 58 Speke Road, Speke, Liverpool, L2 $~\times~ ~~\vee$		168	
			Speke Road Liverpool L24 8QA	CLEAR
		PREVIOUS STEP	NEXT STEP	
etting Conne				
nnectMore E	EV Connection Cost Estin	nator		
ease tell us y	your EV Connection Deta	ills		
	Capa	acity to be connected (kVA)	¢	
		PREVIOUS STEP	NEXT STEP	

Tell us the load you need

ConnectMore Cost Estimator

Pinpoint the location, save your quotation and get another...

This QR code links directly to a short video detailing the complete cost estimation process.

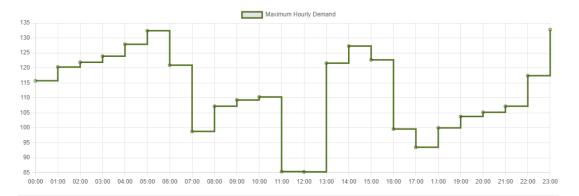

SP ENERGY NETWORKS

technology

smarter gridsolutions

PTV GROUP

ConnectMore Cost Estimator: Flexible Connections



Flexible Connection Information & Costs

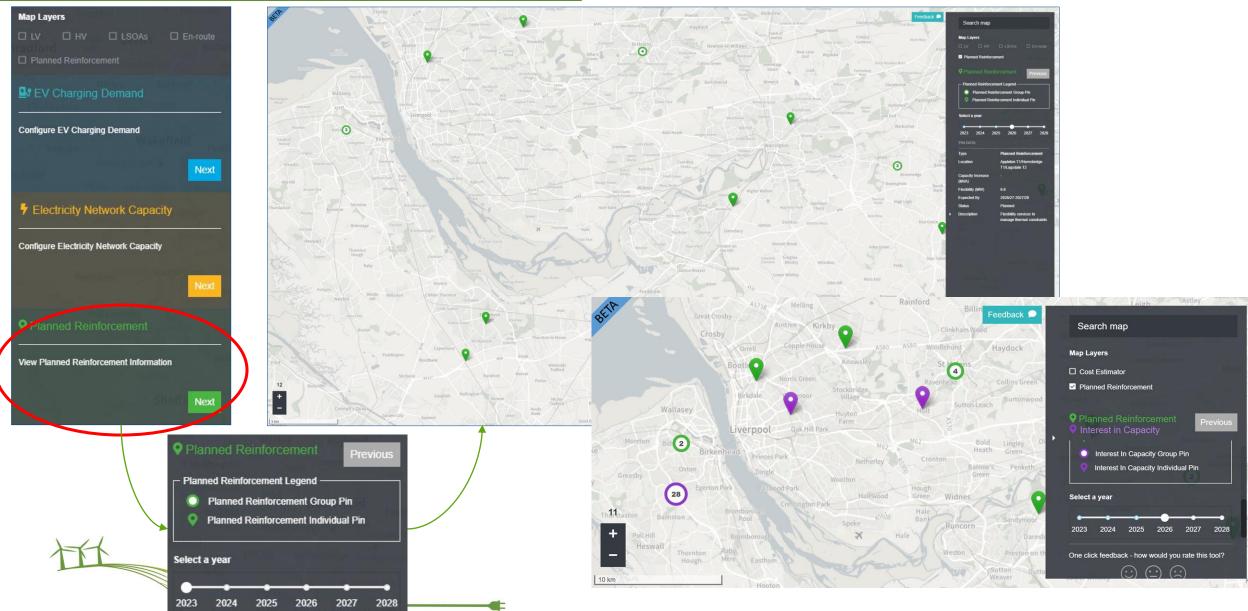
Requested Capacity to be Connected (kVA)

100

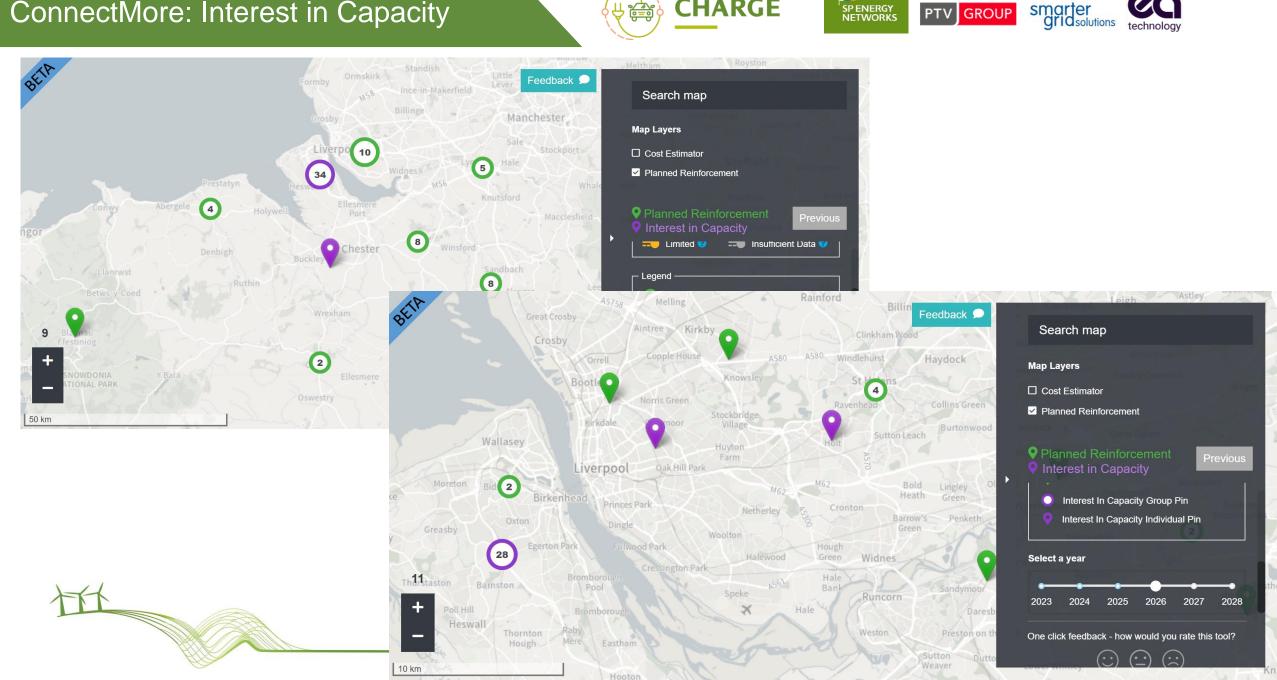
Hourly Capacities Available on the Network for Selected POC

Time Constrained Connection (TCC) Scheme

Maximum Allowed Demands per Hour (kVA)	00:00	01:00	02:00	03:00	04:00	05:00	06:00	07:00	08:00	09:00	10:00	11:00
	115.7	120.3	121.9	123.9	127.9	132.4	120.9	98.8	107.2	109.3	110.3	85.4
	12:00	13:00	14:00	15:00	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00
	85.3	121.6	127.3	122.7	99.6	93.5	100.0	103.8	105.2	107.2	117.4	132.8


Customer Load Management (CLM) Scheme

Maximum Allowed Demand per Hour (kVA)	85.3
Connection Cost (including VAT but excluding local controller)	£5520
Cost Saving Against Reinforcement Quote	£480


Note graph scales....

ConnectMore: Planned Reinforcement & 'Interest in Capacity'

ConnectMore: Interest in Capacity

÷

CHARGE

SP ENERGY NETWORKS

PTV GROUP

Summer 2022

- ConnectMore launched externally
- Enables customers to generate their own Budget Quotes for connections
- Support for traditional Budget Quotes remain.

Spring 2023 Implementation on SPD Areas

December 2022

- ConnectMore fully launched
- HV data integrated
- ConnectMore the default mechanism for customers to generate Budget Quotes?

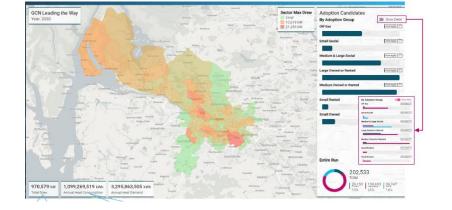
John Allen, Senior Innovation Engineer

ReHeat Show and Tell

Develop a network that is ready for Net Zero Be a trusted partner for customers, communities and stakeholders Ready our business for a digital and sustainable future

Thermal Storage Heat Pumps Base Load

9 101112131415161718192021222324


We must make heat flexible. This means shifting demand to reduce peak demand.

Electrification will be a key enabler however networks will be overloaded without intervention.

Peak Heat Energy requirements are currently approximately 4 times that of Peak Electrical

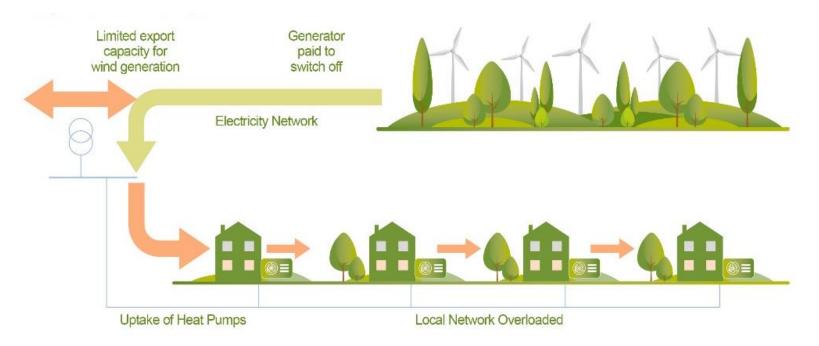
Decarbonising heat is one of the biggest challenges we face on the journey to net zero.

Heating and hot water are responsible for 21% of UK carbon emissions.

Re-Heat

≷ 300

200


100

Decarbonisation of Heat

Some of the challenges

- Electrified heat will overload our local networks in many places
- Renewable generation is being constrained; low carbon electricity is being lost
- Flexibility from heat will be necessary to address whole-system issues
- Customers need to be engaged in the transition and become flexible prosumers

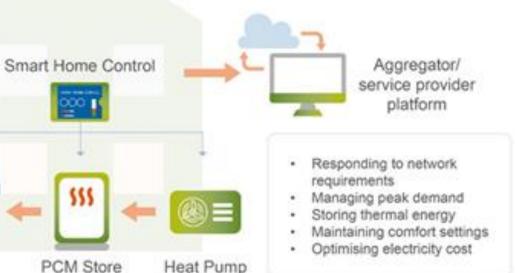
Re-Heat will address these challenges; demonstrating the whole-system benefits of making heat flexible

The solution includes smart grid controls and smart heating management with domestic heat storage to

The solution includes smart grid controls and smart heating management with domestic heat storage to reduce peak electricity demand as a customer friendly and cost-effective alternative to network upgrades

Develop network planning tools to support decarbonisation of heat.

The solution being trialled


Re-Heat Project

• In Home:

• Network:

.

- Improve building thermal insulation
- Replace Oil-fired boiler with efficient Air Source Heat Pump
- Provide a thermal store and smart controller

Detailed System Overview

оПо Thermostat HP consumption Weather М data Interface interface DSR LTEm (AQMP [ē DNO API Platform & feedback (Request demand) 8 SHA256) E.ON UK and Lemonbeat E.ON UK Ext PLC programmer Dashboard Suppliers WEB UP (E.ON User)

<u>ReHeat</u> – Overview of <u>ReHeat</u> solution

Large scale trial

150 homes across East Ayrshire, East Dunbartonshire and Highland council areas, primarily in off-gas grid areas

Benefits

- Keep load within network limits while maintaining customer comfort
- Solution rollout could avoid or defer reinforcement in 606 clusters across SPD by 2040
- Helps customers to transition to low carbon heat quicker and benefit from flexible tariffs

Private and public sector working together

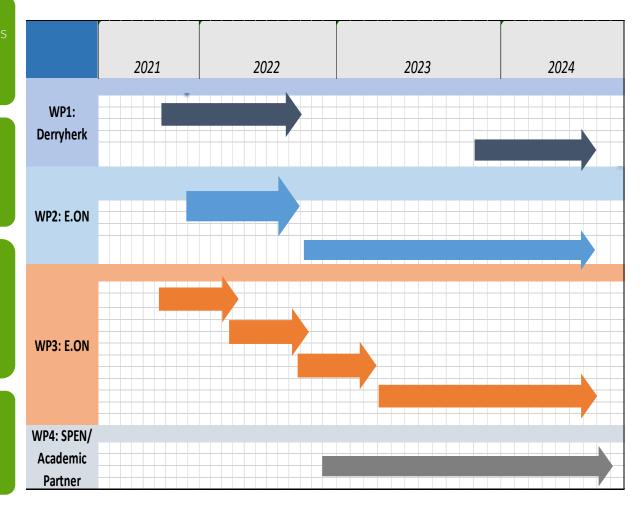
- Led by SP Energy Networks and supported by SSEN
- Financially supported by the Scottish Government LCITP fund
- Heat Electrification Strategic Partnership
- Three local authority partners
- E.ON are the delivery partner including customer recruitment
- Derryherk developing the network tools

Re-Heat

Network Tools, Design, develop and Integration to SPEN Systems
Post-Trial Smart Solutions Modelling

WP2 - Direct Load Control Architecture and DeploymentDLC development and deliveryOperation and Monitoring

NP3 - Large scale live trials



Inception, Planning, Procurement & Contracting
Recruitment & Survey
Installation

Operation and Monitoring

P4 - Analysis and Reporting Collation and analysis of field trial results and modelling

- Good progress with NAVI developments for system modelling
- Detailed design of in-home solution and E.ON platform nearing completion
- Customer recruitment underway 7000 homes receiving letters
- Good engagement from customers with aged oil-fired boilers
- Pilot installations planned for October 2022
- Aim to complete all domestic installations by March 2023

Louise Taylor SPEN ICE Engagement Manager

Incentive for Connections Engagement ICE Plan Update November 2022

Develop a network that is ready for Net Zero Be a trusted partner for customers, communities and stakeholders Ready our business for a digital and sustainable future

Action 1 Policy Documents

We committed to updating and publishing 4 policy documents this year. 11 have been done so far.

Equipment Register		29.04.22
New connections ICP approval	Asset – 01-015	02.08.22
General Spec Civil Substation	Sub - 03-017	30.06.22
Appendix 1 for above spec	Sub - 03-025	30.06.22
General Spec prefab substation	Sub - 03-041	05.04.22
SPEN install LV Internal Mains	Cab - 03-032	13.10.22
Authorisation process	OPSAF - 13-001	12.08.22
LV/HV Connection SPEN & ICP	Con - 04-002	01.07.22
Project completion	Con - 04-006	17.05.22
Declaration of test result 1 ph	Con - 09-001	17.06.22
Declaration of test result 3 ph	Con - 09-001	17.06.22

These can all be found here: <u>https://www.spenergynetworks.co.uk/pages/documents.aspx</u>

Action 2- Communication

. . .

Date of Conference

Wednesday 15th June 2022

Wednesday 26th October (Postponed from 14th September)

Wednesday 7th December 2022

Wednesday 8th March 2023

Customer Surgeries

We continue to offer them to anyone who would like them and these are advertised on social media

Net Zero Conferences

We continued to host our Preparing for Net Zero Conferences each quarter.

SP Energy Networks 20,945 followers 22h • 🔇

Do you have questions about how to get connected to our network? Why not attend one of our customer surgeries where you can discuss your projects and get some expert advice.

It's easy to arrange - simply email us via gettingconnectedupdate@spenergynetworks.co.uk

You can also find more information about our connections services here: https://lnkd.in/dCTtUwpM

Or catch up on our monthly newsletters packed full of information about how we're supporting the race to Net Zero: https://lnkd.in/eHwccNEc

#SPEnergyNetworks #Connections #NetZero #NetworkoftheFuture

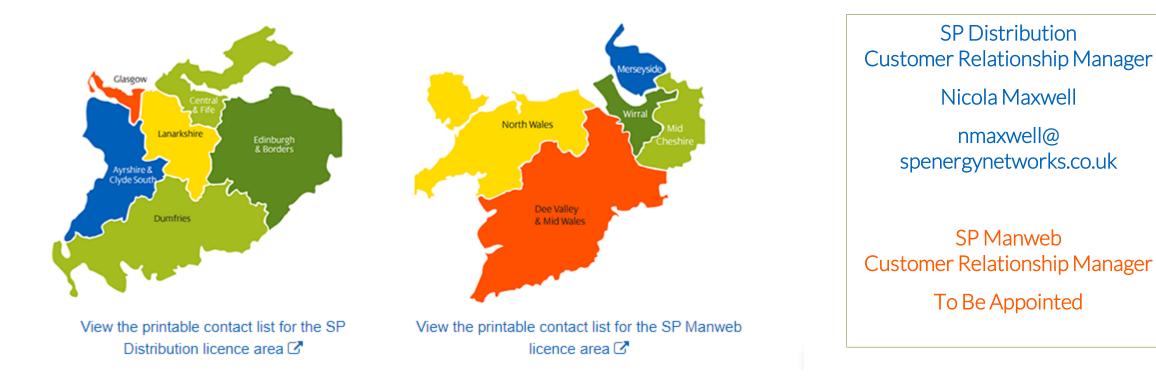
SP ENERGY NETWORKS

Action 2- Communication

Stakeholder Newsletters

We have continued to produce monthly newsletters to give a regular update on the work we are doing to facilitate Net Zero and to help customers understand the improvements we are implementing to make connections simpler and more efficient.

All newsletters are available here:


https://www.spenergynetworks.co.uk/pages/stakeholder_newsletters.aspx

Action 2- Customer Relationship Manager

www.spenergynetworks.co.uk/pages/connections_contact_us

Details of how to contact our Connections team are detailed below. Printable contact lists are available for SPD C and SPM C. Our full contact us page is also available.

Customer Engagement Focus Groups

We will continue to host our 'Customer Engagement Focus Group' to discuss and review any ongoing proposed website modifications prior to publication

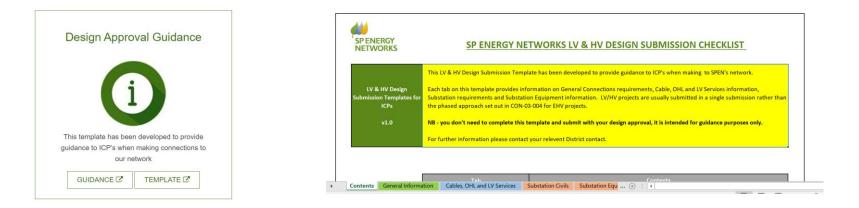
Customer Engagement Focus Group

Wednesday 3rd August

Wednesday 8th February 2023

August session we discussed iDentify and the Design Self Service Tool

Please let us know if there are specific topics you wish for us to cover at our February session



Design Approval Guidance

As part of this year's ICE actions we've committed to develop design approval guidance for our ICP customers.

The aim is to be more explicit in identifying the information we require and to provide supporting documents and guidance to assist you in preparing your design approval submission.

This should lead to a more consistent approach from SP Energy Networks designers in both SPD and SPM licence areas and help you to submit designs which are more likely to gain approval at the first attempt.

https://www.spenergynetworks.co.uk/pages/information_for_icps_and_idnos.aspx

RAdAR Working Group.

We have hosted 2 Workshops this year, will a further 2 planned for next year.

Radar Meetings
Wednesday 17 th August 2022
Thursday 13 th October 2022
Wednesday 11 th January 2023
Wednesday 29 th March 2023

We have now gone live with the 7 changes that we committed to delivering:

- Upload enhancements speed, file size and multiple drop
- POC Register Improvement SLC15 Expiry Dates visibility
- Search functionality improvements
- Land rights flexibility added
- Increased duration before Timing Out
- Hyperlink to latest minimum info requirements on application form
- Ability to reject a POC Acceptance if documentation missing

RAdAR changes now Live! 20+ new application Additional File Size Being Used

ICP Safety Seminar: Thursday 16th February 2023

Key areas for Possible Focus at next Workshop

- Need more traction with manufacturers and Installers
- Look to benchmark with other DNO's / IDNO's and ICP's
- Need to work together to raise awareness of the improvements within the industry
- Lobbying all manufacturers to gain their support and commitment
- SPEN and GTC looking for ither IDNO's and ICP's to share the delivery of this workshop
 - Is this something you want to get involved in?

Action 8 - We will continue to share the learnings and best practice from our Net Zero Knowledge Forum with

our wider base of community partners, academic institutions and local government bodies.

We will disseminate all learnings at our quarterly Preparing for Net Zero Conferences and on our website

Action 8 - We are currently Creating a Optioneering and Decision making model for the Net Zero Community.

- Tirage Filter to Focus on Key LCT tools aligned with Building Architype and specific project
- Dynamix LCT Scoring Matrix which incorporates a full suite of climate, social and commercial elements
- Year on Year Utility investment map to allow Customer alignment of plans
- Individual LCT Playbooks that outline all the key information regarding each technology
- Model to create an overall 10 year + Climate master plan

Action 9- Preparing for DSO & Action 10- Project Charge

Action 9 Preparing for DSO

At our Preparing for Net Zero Conference in October 2022, we had Smarter Grid solutions presenting on Active Network Management. A further update will be done at our March conference on Wednesday 8th March 2023.

Action 10 Project Charge

There will be an update at our Preparing for Net Zero Conferences in the afternoon session at 14:00

Dates for the diary

Dates for the diary

Wednesday 8th February- Customer Contact Focus Group

Thursday 16th February – ICP/ IDNO Safety Seminar

February/ March TBC- ICP Design Template Webinar

Wednesday 8th March - Preparing for Net Zero Conference

Please register for our next events at: spenergynetworks.co.uk/stakeholdereve nts

Thank you for your time today.

Your feedback has been useful and we will incorporate your comments when planning our next engagements.

Please register as a stakeholder if your would like to receive further updates from us:

spenergynetworks.co.uk/register