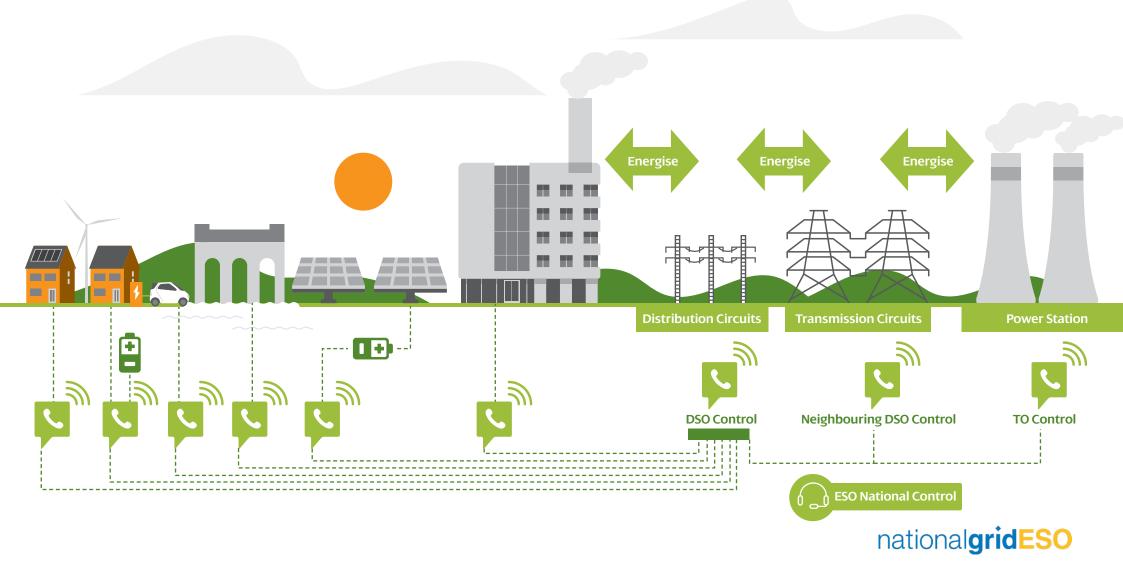


Black Start from Distributed Energy Resources

What is Black Start?


nationalgridESO

Introduction to the Project

Network Innovation Competition

How can we incorporate DERs into Black Start strategy?

NIC Project - Power Engineering & Trials Work Stream

Aim

Provide credible technical solutions for the provisions of Black Start (BS) services from DER

- -What is technically feasible and how do we do it?
- -Recommendations for adaptations of DER and distribution networks to facilitate BS DER economically and safely.

Approach

 Ten case studies selected (across SPD and SPM) based on a range of DER types, network topologies and potential BS restoration scenarios.

Α	D	De	en	d	ix
/ `				u	1/1

Case Study No.	Network Name	Total Generation Capacity (MW)	Anchor (MW)	Additional DER (MW)	Network Topology
1	Galloway Region (SPD - Dumfries)	224	81.2	140.1	Radial – 132/33kV
2	Glenrothes GSP (SPD - Central & Fife)	165.7	112.4	28.5	Radial – 275/33kV
3	Chapelcross GSP (SPD - Dumfries)	136.5	45	78.8	Radial – 132/33kV
4	Dunbar GSP (SPD - Edinburgh)	165.9	41.3	118	Radial – 132/33kV
5	Meadowhead (SPD - Ayrshire)	157.75	32	99.9	Radial – 275/33kV
6	Portobello GSP (SPD - Edinburgh)	29.45	15	0	Radial – 132/33kV
7	Bootle Grid (SPM - Mersey)	53	35	18	Mesh -132/33kV – 2 GT
8	Legacy (SPM - Wales)	157.75	32	99.9	Mesh – 132/33kV – 6 GT
9	Sankey Bridges (SPM - Cheshire)	287	281	3.9	Mesh – 132/33kV
10	Maentwrog (SPM - Wales)	103	39.8	46	Radial – 275/33kV

Key Milestones:

Power Engineering Trials

Team initiated from 1st January

First Report published: 31/07/2019

Organisational & Systems

Team initiated from 1st April

First Report published 08/11/2019

Organisational & Systems

Team initiated from 1st May

First Report published 08/11/2019

nationalgridESO

Case Study – Technical Challenges

Earthing – When a 33kV network is isolated from the transformer infeeds at a GSP, the 33kV earthing point is typically disconnected (e.g. earthing transformers) leaving an unearthed 33kV network.

Low Fault Levels – Will existing protection at all voltage levels be able to detect faults (on the network and DER)? *Minimum fault level required to ensure wind turbine stability* (*typically 2-3x wind farm rating*)

Temporal nature of demand – Difficult to predict what demand (or generation) may 'appear' when a feeder is closed, e.g. Cold Load Pick Up (CLPU).

Frequency Stability – How can the generation/load balance best be maintained (most DER does not have f control)?

P (**MW**), **Q** (**MVAr**) **Pickup** – In a low inertia system, how to enable a viable PQ pick up capability to grow a power island while staying within frequency limits.

Reactive Power Capability – The ability for DER to absorb, or the network to be compensated for, the reactive gain when energising the network.

Voltage Control – Where best to monitor, and how to control the voltage (33kV normally controlled by GSP transformers).

Automation – A certain level of automation will be required to initiate, maintain and re-synchronising a power island. Limited human resources available (e.g control engineers).

Others – Transformer inrush currents, resynchronising with the wider network, oscillations, harmonics, zero inertia ...

How can you get involved?

NIC Project Contacts

Join our mailing list for updates and invitations: https://mailchi.mp/db16788e123e/ distributedrestoration

(We will send a recording of this webinar and an invitation to join our workshop in May through this list)

Black Start from DER queries box. distributedresto@nationalgrid.com

We will get the appropriate expert to answer you query from the technical, commercial or organisational work streams

Web page : www.nationalgrideso.com/ innovation/projects/restored

NIC Project Contacts

Talk to your account manager if you have an existing contract

For general enquiries please contact: Commercial.operation@nationalgrid.com

