As an aid to deterring metal theft, this booklet has been put together to help identify the types of utility power cables and associated underground equipment stolen from the ScottishPower network.

Contents

Abbreviations	3
Cable Identification	4, 5, 6
33,000 Volt Plastic Cables	7, 8
33,000 Volt Paper Insulated Cables	9
11,000 Volt Three Core Plastic Cables	10
11,000 Volt Single Core Plastic Cables	11, 12
11,000 Volt Three Core Paper Insulated Cables	13, 14
Low Voltage Plastic Mains Cables	15, 16, 17
Low Voltage Paper Insulated Mains Cables	18
Low voltage Plastic Service Cables	19
Low voltage Paper Insulated Service Cables	20
Alternative Cable Designs (LSOH)	21
Earth Cable & Tape	22, 23
Substation Equipment	24
ScottishPower Contact Details	25
Abbreviations used in booklet

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>Aluminium</td>
</tr>
<tr>
<td>BS</td>
<td>British Standard</td>
</tr>
<tr>
<td>CNE</td>
<td>Combined Neutral Earth</td>
</tr>
<tr>
<td>CSA</td>
<td>Cross Sectional Area (mm2)</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>H</td>
<td>Hochstadter - screened 33kV paper cable</td>
</tr>
<tr>
<td>HSL</td>
<td>Hochstadter - screened separately lead sheathed 33kV paper cable</td>
</tr>
<tr>
<td>kV</td>
<td>kilo-volt</td>
</tr>
<tr>
<td>LSOH</td>
<td>Low Smoke Zero Halogen</td>
</tr>
<tr>
<td>LV</td>
<td>Low Voltage</td>
</tr>
<tr>
<td>MDPE</td>
<td>Medium Density PolyEthylene</td>
</tr>
<tr>
<td>PICAS</td>
<td>Paper Insulated Corrugated Aluminium Sheath</td>
</tr>
<tr>
<td>PILCSTA</td>
<td>Paper Insulated Lead Covered Steel Tape Armoured</td>
</tr>
<tr>
<td>PILCSWA</td>
<td>Paper Insulated Lead Covered Steel Wire Armoured</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl Chloride</td>
</tr>
<tr>
<td>SNE</td>
<td>Separate Neutral Earth</td>
</tr>
<tr>
<td>XLPE</td>
<td>Cross Linked PolyEthylene</td>
</tr>
</tbody>
</table>

N.B.

All cable measurements given as an aide to identification are nominal sizes taken from British Standards or supplier specifications, actual cable sizes will vary slightly depending on the manufacturer and material quality.
Identification

To assist in identifying cable types and equipment the booklet is laid out in sections covering:

- How to identify cable types from their external markings.
- Depth LV, 11kV & 33kV cables are buried in the ground.
- Types of identification / warning marker tapes placed over cables.
- Range of LV, 11kV & 33kV cables currently being installed on the network, and previous versions used.
- Earth wire & tapes
- Associated equipment – Substation LV distribution board, transformer winding.

External Markings

All cables with a plastic covering (oversheath) will have the information below embossed or indented onto it for identification purposes.

ScottishPower’ current list of “approved manufacturers” for the supply of power cables up to and including 33kV:

- Copper Cable Company
- Ericsson
- Nexans
- NKT
- Prysmian
- Cabelte
Cable Identification

Depth of Cover

Cables and ducts (pipes containing cables) shall be installed so as to provide the minimum depth of cover. Standard depths for each voltage category in the footway are highlighted below.

<table>
<thead>
<tr>
<th>Surface Type</th>
<th>Voltage</th>
<th>Voltage</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33kV</td>
<td>11kV</td>
<td>Low Voltage</td>
</tr>
<tr>
<td>Unmade ground, footways & footpaths</td>
<td>775</td>
<td>600</td>
<td>450</td>
</tr>
<tr>
<td>Roads</td>
<td>775</td>
<td>700</td>
<td>600</td>
</tr>
<tr>
<td>Cultivated ground inc. gardens</td>
<td>775</td>
<td>700</td>
<td>600</td>
</tr>
<tr>
<td>Agricultural land</td>
<td>910</td>
<td>910</td>
<td>910</td>
</tr>
</tbody>
</table>

Protective Tiles / Warning Tapes

The following tapes and tiles are installed over cables and ducted installations, with the high visibility colours providing a warning of danger when excavating.

LV Tape

Thin polythene marker tape
0.1mm thick, 150mm wide

11kV Tape

Marker tape laminated onto polyethylene
2.5mm thick, 200mm wide
Cable Identification

33kV Tile
Thick tiles supplied with a plastic pin interlocking system
1000mm long x 244mm wide x 12mm thick

Older Design Protective Tiles

Before the use of plastic warning tape & tiles the brick versions below where used, for covering cables.

LV - Small tiles (230 x 110 x 50mm) linked together with U-shaped metal pins.
11kV - Large tile (325 x 195 x 60mm) with inter-linking design built in.
33kV - (not shown) Large concrete tiles, approx 1 metre in length.
ScottishPower 33,000 Volt Cables

Single Core Copper XLPE Cable

The single core XLPE cable shown below in fig.1 was used as the standard circuit cable for 33kV up until March 2011. It is still available for repairs or deviations to existing Cu. cables, but has now been replaced by an aluminium version.

The cables in figs. 2, 3 & 4 are used on windfarm and connection from the grid applications.

All single core 33 & 11kV cables should be laid in touching trefoil (triangular) formation and tied together.

Cable Construction

A. Copper conductor – stranded round, range available shown in figs.1,2,3,4.
 Recently a 800mm² version of this cable has been installed on a windfarm job in Scotland.

B. XLPE insulation – thickness 8mm

C. Copper wire earth screen - 50mm² CSA on all sizes of cable

D. MDPE oversheath
ScottishPower 33,000 Volt Cables

Single Core Aluminium XLPE Cable

Aluminium single core XLPE cables are now used as the standard circuit cables for 33kV, as from March 2011. The introduction of these aluminium cables was due to the large rise in copper prices in recent years, even taking into account the larger conductor sizes required to carry the same power.

- 240mm² Al replacing 150mm² Cu
- 400mm² Al replacing 240mm² Cu

Cable Construction

A. Aluminium conductor – stranded round, range 240 & 400mm²
B. XLPE insulation – thickness 8mm
C. Copper wire earth screen - 50mm² CSA on all sizes of cable
D. MDPE oversheath
ScottishPower 33,000 Volt Cables

Paper Insulated Lead Covered 33kV Cables
Fig. 1 – Single core cable was generally used for switchgear connections within large substation sites.
Fig. 2 - This cable was the main 33kV circuit cable installed on the network up to the mid 1990’s, prior to the introduction of XLPE cables. The standard conductor size used was 185mm.
Fig.3 – 3 core HSL cable was installed in short sections for connections up poles to overhead lines.

Cable Construction
A. Copper or aluminium conductors
 - 3 core range of conductor sizes on the network 70-300mm² with a diameter range between 80.9 – 107.2mm
B. Layers of paper insulation impregnated with mineral oil compound – thickness 6.8mm
C. Conductive layer on each core - insulation screening
D. Lead sheath with bitumen coating
E. PVC oversheath
F. Bitumen coated paper and hessian bedding layers
G. Steel wire armours
H. Bitumen coated hessian tape serving (oversheath)
I. Separate lead sheath around each core, on 3 core HSL cable
ScottishPower 11,000 Volt Cables

Three Core XLPE Cable

ScottishPower began installing this type of cable in October 2003, as a replacement for PICAS, paper insulated cable.

The three core XLPE cable shown below is currently used as the standard underground circuit cable on the 11kV network. It can also be found connected to terminations on overhead line poles.

Cable Construction

A. Aluminium conductors – 3 x 95, 185, 300mm² solid round
B. XLPE insulation – thickness 3.4mm on each core
C. Copper wire earth screen
 - Fig.1 - 70mm² CSA on 95mm² cable
 - Figs. 2 & 3 - 95mm² CSA on 185 & 300mm² cables
D. Red MDPE oversheath
ScottishPower 11,000 Volt Cables

Single Core XLPE Cable

ScottishPower began installing this type of cable in October 2003.

The single core XLPE cable shown below is only used within 25 metres of a substation, for connections to switchgear or pole terminations.

Cable Construction

A. Aluminium conductor – 95, 185, 300mm² solid round
B. XLPE insulation – thickness 3.4mm
C. Copper wire earth screen - 35mm² CSA on all 3 sizes of cable
D. Red MDPE oversheath

Fig. 1 95mm² 1 core XLPE

Fig. 2 185mm² 1 core XLPE

Fig. 3 300mm² 1 core XLPE
ScottishPower 11,000 Volt Cables

Single Core XLPE Cable

The single core XLPE cables shown below figs.1 & 2 are used for connections between transformers and switchgear at primary substation sites.

Cable Construction

A. Copper conductor – stranded round 300 & 500mm2
B. XLPE insulation – thickness 3.4mm
C. Copper wire earth screen - 35mm2 CSA on both sizes of cable
D. Red MDPE oversheath

Figs 3 & 4 show an older Paper Insulated Lead Covered (PILC) cable used for the same application.
ScottishPower 11,000 Volt Cables

Paper Insulated Corrugated Aluminium Sheath (PICAS)

PICAS cable was installed on the 11kV network up to October 2003, when it was replaced by 3 core XLPE as the standard circuit cable.

Cable Construction

A. Aluminium conductor – 3 x stranded sector shaped, range available in figs 1,2 & 3
B. Layers of paper insulation impregnated with mineral oil compound – thickness 3.4mm between conductor and sheath
C. Corrugated Aluminium sheath (bitumen coated)
D. Red PVC oversheath
ScottishPower 11,000 Volt Cables

Paper Insulated Lead Covered Steel Wire Armoured (PILCSWA)

This was the main 11kV circuit cable installed on the network up to the early 1980’s, prior to the introduction of PICAS cable.

Cable Construction

A. Aluminium or Copper conductors – 3 x stranded sector shaped on 70mm² cable and above, round conductors below 70mm².
 • Large range of conductor sizes on the network 16-300mm² with an overall diameter range between 40.3 - 71.6mm
B. Layers of paper insulation impregnated with mineral oil compound
C. Figs. 1 & 2 Additional (belt) insulation layer
D. Lead sheath, covered with bitumen coated paper and hessian layers, as a bedding for the armour wires
E. Steel wire armours
F. Bitumen coated hessian tape serving (oversheath)
G. Fig 3. Shows a screened cable with a conductive layer applied over each core.

Fig. 1 70mm² 3 core PILCSWA

Fig. 2 95mm² 3 core PILCSWA

Fig. 3 185mm² 3 core PILCSWA
ScottishPower Low Voltage Cables

3 Core Waveform CNE Mains Cable

This is the standard low voltage cable used to construct all new extensions to the network.

The term waveform refers to the neutral/earth wires (D) in the cable which are laid in a wave formation (not wrapped around the cable) to assist stripping, when accessing the live conductors inside.

Cable Construction

A. Aluminium conductor – 3 x solid sector shaped, range available shown in figs. 1,2,3
B. XLPE insulation – thickness 95mm² cable = 1.1mm, 185 mm² cable = 1.6mm, 300 mm² cable = 1.8mm
 - Live cores coloured: Brown, Black, Grey
C. Rubber bedding layer
D. Copper neutral / earth wires
 - 70mm² CSA on 95mm² cable, fig.1
 - 120mm² CSA on 185 & 300mm² cable, figs.2 & 3
E. PVC oversheath
ScottishPower Low Voltage Cables

4 Core Waveform SNE Mains Cable

Use of this cable type on the network is limited to repairs and deviations on existing PILC LV cable.

Cable Construction

A. Aluminium conductor – 4 x solid sector shaped, range available shown in figs. 1,2,3
B. XLPE insulation – thickness 95 mm2 cable = 1.1mm, 185 mm2 cable = 1.6mm, 240mm2 cable = 1.7mm
 - Live cores coloured: Brown, Black, Grey. Neutral: core Blue
C. Rubber bedding layer
D. Copper earth wires
 - 70mm2 CSA on 95mm2 cable, fig.1
 - 120mm2 CSA on 185 & 240mm2 cables, figs.2 & 3
E. PVC oversheath

Fig. 1 95mm2 4 core Waveform

Fig. 2 185mm2 4 core Waveform

Fig. 3 240mm2 4 core Waveform
ScottishPower Low Voltage Cables

Older Examples of Waveform CNE Mains Cable

The picture below shows previous colours used to identify the conductors of low voltage cables, and the new colours which came into force in March 2006 as part of harmonisation across Europe.

![Image of color changes](image)

Fig. 2 shows waveform cable with aluminium neutral / earth (N/E) wires used before the copper version in fig.1.

Fig. 3 shows one of the first designs of waveform cable introduced with black numbered cores, and aluminium N/E wires.
ScottishPower Low Voltage Cables

Paper Insulated Lead Covered Steel Tape Armoured (PILCSTA)

This type of LV cable was installed on the network up to the mid 1970's, prior to the introduction of waveform cable.

Cable Construction

A. Copper or aluminium conductors – 4 x stranded sector shaped
 - Large range of conductor sizes on the network 70-300mm2
 with an overall diameter range between 38.4 – 66.9mm

B. Layers of paper insulation impregnated with mineral oil compound
 - thickness 1.2 to 1.6mm between the conductor and sheath

C. Additional (belt) insulation layer

D. Lead sheath, covered with bitumen coated paper and hessian layers, as a bedding for the armour wires

E. Steel tape armours

F. Bitumen coated hessian tape serving (oversheath)
ScottishPower Low Voltage Cables

Plastic Service Cables

The service cables below are used on the network to supply street lighting columns - fig.3, houses - figs. 1 & 4, small blocks of flats, small factory / commercial units - figs. 2,5,6.
Figs. 1 & 2 show combined neutral earth (CNE) cables used on new build installations, to latest wiring regulations.
Figs.3,4,5,6 show separate neutral earth (SNE) cables used on older installations.

Cable Construction

A. Aluminium conductor – sizes available 25 & 35 mm²
 • Fig 6. Shows a copper cable available, but not commonly used
B. XLPE insulation
C. Copper wire neutral / earth
D. PVC oversheath
E. Covered neutral conductor
F. Copper earth wire

[Diagrams of cable construction and dimensions]
ScottishPower Low Voltage Cables

Paper Insulated Lead Covered Service Cables

The service cables below where used on the network prior to the introduction of plastic cables.

Cable Construction

A. Copper conductors – 2 or 4 core versions
 • Range of conductor sizes on the network 4 - 35mm2
 • 2 core overall diameter range between 19 – 24.6mm
 • 4 core overall diameter range between 22 – 31.9mm
B. Layers of paper insulation impregnated with mineral oil compound
 – thickness 1.0 to 1.2mm between the conductor and sheath
C. Additional (belt) insulation layer
D. Lead sheath, covered with bitumen coated paper and hessian layers, as a bedding for the armour wires
E. Steel tape armours
F. Bitumen coated hessian tape serving (oversheath)

Fig. 1 2 core PILC

Fig. 2 4 core PILC
ScottishPower Cables

Low Smoke Zero Halogen Cables (LSOH)

For all the plastic low voltage service, mains and 11kV cables shown on the previous pages ScottishPower also buy versions with a LSOH oversheath, coloured orange.

These are used where significant cable runs inside buildings are required, and have the advantage of not giving off toxic fumes in the event of a fire.

Examples of LSOH service and mains cables below, identical to standard cable construction apart from the oversheath material:
ScottishPower Earth Cables & Tape

Earth Cable
The earth cables below can be found in sub-stations, up poles and fig.1 in customers houses.

Cable Construction
A. Copper conductor – stranded round
 - Also available (but not shown) are 10mm² & 6mm² cables
B. PVC Oversheath – green / yellow

Earth Tape
The copper & aluminium earth tapes are used to connect all the metalwork / switchgear within substation buildings and outdoor compounds.
ScottishPower Earth Cables & Tape

In addition to the sizes on previous page 1.1/2" X 3/16" copper tape was used, with 25mm x 3mm & 40mm x 4mm copper now available as standard from stores.

Examples of earth cable & tape installations within a substation

Fig.1 3 x Copper earth cables connected to main aluminium substation earth tape.
Fig.2 Copper earth tape connected to main aluminium earth tape.
Fig.3 Aluminium to aluminium tape connection.

N.B. Copper earth tape and cable has been a major target for theft in a number of areas. To help combat this there have been a number of increased security measures introduced into the company:

- Use of `identifiable` aluminium earth tape in place of copper where possible
- At selected sites the use of a high security steel pin fixing system for copper earth tape
- Superior high security steel padlocks and `lock-keeper` devices for installation at vulnerable sites.
Examples of Substation Equipment

Fig.1 shows a transformer removed from a substation building in an attempt to dismantle it, for the copper inside.

- There are not only huge risks electrically from this type of activity but because this equipment is oil filled a spill could also have a big environmental impact.

Fig.2 shows the copper winding from inside a transformer. Figs.3 & 4 show an un-insulated LV board with exposed copper bus-bars and 4 x LV mains cables attached.
ScottishPower Contact Details

WHAT TO DO IF YOU FIND CABLES OR FOR QUERIES ABOUT EMPLOYEES OR CONTRACTORS (24/7)

If you find cables or earth tape which you believe may belong to ScottishPower (SP) or wish to ask about employees or contractors please contact the ScottishPower Grid Control room at Kirkintilloch. The Grid Control Room will not always know whether someone is employed as a contractor but it is the best place to start.

Tel: 0141 776 4185
Email: SWITCH1@ScottishPower.com.

TO CONTACT SP ALARM RECEIVING CENTRE (ARC) (24/7)

If, for any reason, you cannot get hold of Grid Control the Cathcart ARC is also manned 24/7. From Autumn 2012 ARC security staff will have access to records of all staff and contractors with photo passes.

Tel: 0141 568 2024/2025

OTHER USEFUL CONTACTS (NOT 24/7)

Charlie Hendrie (Security Manager Scotland and Ireland)
Tel: 0141 568 4725
Email: Charles.Hendrie@scottishpower.com

Harry Lees (Energy Networks)
Tel: 0141 614 1473
Email: Harry.Lees@scottishpower.com

PERSONAL PROTECTIVE EQUIPMENT (PPE)

Many genuine SP employees still use PPE with old SP logos on. Equally the ownership of PPE with current or former SP logos on does not prove the person works for SP. By the end of 2012 all current SP staff should have a green photo pass with their name on it to prove their identity. Long-term contractors will also have an orange photo pass but contractors working off-site or in new sites where there is no access control system fitted will not necessarily have such passes.